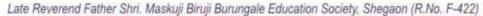
LateReverendFatherShri.MaskujiBirujiBurungaleEducationSociety's

SHRI DNYANESHWAR MASKUJI BURUNGALESCIENCEANDARTSCOLLEGE,

SHEGAON-444203, Dist. Buldana

(Affiliated to SantGadge Baba Amravati University, Amravati)


(Accredited byNAACwithB+ GradewithCGPA2.65)

Criterion- III

RESEARCH INNOVATIONS AND EXTENSION

3.3.2: Number of books and chapters in edited volumes/books published and papers published in national/international conference proceedings per teacher during last five years

SHRI. DNYANESHWAR MASKUJI BURUNGALE SCIENCE & ARTS COLLEGE

AKOT ROAD, **SHEGAON** - 444 203 DIST - BULDANA (M.S.) Ph. No. 07265 - 253959, Fax - 07265 - 254939

(NAAC Accredited with B+ Grade , C.G.P.A. 2.65)

Shri. Ramvijay Dnyaneshwar Burungale President Dr. R. E. Khadsan Principal

Cell - 9767317055, E-mail - dr.khadsan@gmail.com

No.:SDMBCS/NAAC/IQAC/AQAR/2021-22/3343

Date:30/12/2022

Self Declaration

This is to declare that, the information, reports, true copies of the Supporting documents, numerical data, and weblinks etc. furnished in this file are verified by IQAC and the head of the institution and found correct.

Dr.A.B.Wadekar

PAAC/R2AC Co-ordinator

#4.D.M.Burungale Science & Arts College.

SHEGAON 444203 Dist.Buldanu

***PACK ID-BIHCOG#27889**

Dr.R.E.Khadsan

Principal
Shri Dnyaneshwar Maskuji Burungale
Science & Arts Collegs, Shegaon
Dist. Buldana, Pin - 444203

INDEX

SN	Content		
1	3.3.2: Number of books and chapters in edited volumes/books published and papers published in national/international conference proceedings per teacher during last five years		
2	3.3.2.1: Total number of books and chapters in edited volumes/books published and papers in national/international conference proceedings year wise during last five years		
3	Number of Book chapter published in last five years		
4	Number of conference papers published in last five years		
5	Academic Year 2021-22 Books Chapters and Conference Paper		
6	Academic Year 2020-21 Books Chapters and Conference Paper		
7	Academic Year 2019-20 Books Chapters and Conference Paper		
8	Academic Year 2018-19 Books Chapters and Conference Paper		
9	Academic Year 2017-18 Books Chapters and Conference Paper		

3.3.2: Number of books and chapters in edited volumes/books published and papers published in national/ international conference proceedings per teacher during last five years

19

3.3.2.1: Total number of books and chapters in edited volumes/books published and papers in national/ international conference proceedings year wise during last five years

2021-22	2020-21	2019-20	2018-19	2017-18
4	6	1	6	2

Acd Year	SN	Name of the teacher	Title of the book/chapte rs published	Title of the paper	Title of the proceedi ngs of	roceedings per tea Name of the conference	National / Internatio nal	Year of publicati on	ISBN numbe r of the procee	Institut e at the
20-21	1	Dr.R.K. Jawanjal	200 200	Role of Academic Libraries in the human resources development of Information technology	NCMR21- Peer revied book chapter	National conference on multidisciplinary research NCMR 202	National	Mar-21	978-81- 95551- 4-9	YES
20-21	2	Mr Y.P. Wayal	NCMR21- Peer revied book chapter	Study of Interaction of lightwidth concentraction of ligends in various media by refractrometry		National conference on multidisciplinary researchNCMR- 2022	National	Mar-21	978-81- 95551- 4-9	YES
20-21	3	DR.R.J Deshmukh	NCMR21- Peer revied book chapter	Synthesis & Characterisation of s-hepta - o- benzonil lactosyl - 1- aryl dithi carbamat es	NCMR21- Peer revied book chapter	National conference on multidisciplinary research NCMR- 2023	National	Mar-21	978-81- 95551- 4-9	YES
20-21	4	Dr.G.D.Tam batkar	NCMR21- Peer revied book chapter	Study of Interaction of lightwidth concentraction of ligends in various media by refractrometry		National conference on multidisciplinary researchNCMR- 2022	National	Mar-21	978-81- 95551- 4-10	YES
20-21	6	Mr. V.V. Agarkar		An Overview of Technique used for Information Extraction from Scientific Documents	2020	International Conference on Advanced in Physical, Chemical & Mathematical Science(Abstract only)	internatio	2020		YES
17-18	2	Dr. R K Javanjal		From card catalogue to web OPAC	htra	Revamping of academic libraries for new generation Vol-1	National	2018		YES

Academic Year 2021-22

DNYAMAIM

The Role Of
Information
Communication
Technology
New Invention And
Development in the Library

Bulloks

Dr. Praful N. Kadu Mr. Umesh J. Gawande Dr. Rajesh Godam

Dnyan Path

POOR FAUL

2021

3.2.2

The Role Of Information Communication Technology New Invention And Development In the Library

- INDEX -

r-00

PART - A Electronic Resources Management

	Electronic Resources in any	
#.X-C-	e-Learning and MOOCs	1-5
Chanz Chanz	Dr Prabhakar S. Mohe	
		6-14
2.	Problems In Accessing Ugc Infonet E-journals Consortium Among	5
Part .	The Research Scholars: A Survey Of Pune University Jaykar Library	
3	Mr. Jagdish S.Moon	15-20
3.	Use Of E-resources In Higher Education: Advantages And Concerns.	.—
**	Ms.Sushma Mawande	
4.	Use And Awarness About N-list E-resources By The Under	21-24
	Graduate Students	
	Dr.Ranjana K. Jawanjal .	
5.	E-consortia In The Digital Era - Special Reference To N-list	25-28
Э.	Dr. Rahul R. Dhuldhule	
		20.20
6.	Title: Free E-resources for students, Research scholars and Faculties	29-38
	Mr. Vrushabh S. Dahake, PrajwalDhande, Sumedh S. Tayade	
7.	गांधीतीर्थ ई – ग्रंथालय : ज्ञात अज्ञात गांधी स्त्रोत	39-44
::##	अशोक नि. चौधरो	
		45-47
8.	ग्रंथालयातील इलेक्ट्रॉनिक संसाधने आणि व्यवस्थापन	
9 S	डाँ. पंकज पुंडलिकराव कावरे	
	Transforming Academic Libraries in to Digital Libraries	
9.	Why Digital Libraries?	48-51
£	Dr.Madhuri M. Deshmukh	
10.	Status of College Library Automation in Educationally Backward Districts in Maharashtra	52-58
	Dr. Gajanana B. Ghayal	
11.	Panafita Of Digital I il I	
11.	Benefits Of Digital Library In Teaching And E-learning Prof. Nilesh Ashokrao Dewar	59-61
	THE STREET SHOWER DEWALL	
12.	Changing Role of Information and Communication Technology	(1 (5
	(ICT) in the Library Services	61-65
	Dr. Sandip B. Khandare	

Best of Best Collections

ISBN:978-81-954818-7-3

M.Sc.II Semester III Practical VI (Immunology and Medical Microbiology)

Practical Handbook
As per Syllabus by Sant Gadge Baba Amravati University, Amravati

Authored by

Mr. Mayur J. Thakare Dr. Deepika N. Jain Priyanka Y. Jangid (Mrs. Priyanka Pranil Jain)

Dr. Vijay Nanoty Prof. Dr. Aarti R. Deshpande Dr. Rachana R. Pachori (Sharma)

My Rays Book Publication Centre powered by International Journal of Microbial Science (ISSN:2582-967X)

OUR OTHER PUBLICATIONS

Practical Handbook of F.Y. B.Sc.Microbiology-Volume-1 B.Sc FIRST YEAR (Semester II) Paper VI- Microbiology Practical: As per the syllabus of Dr. Babasaheb Ambedkar Marathwada University, Aurangabad M.Sc. | Practical Handbook of Microbiology (Lab course IV): As per the syllabus of Swami Ramanand Teerth Marathwada, University, Nanded Practical Handbook in Microbiology: My Rays Book Publication Center powered International Journal of Microbial by Soil Microbiology (Practical Handbook): M.Sc. I (Semester-I) Fermentation Technology I: SAVITRIBAI PHULE PUNE UNIVERSITY B. Sc. Degree Course in MICROBIOLOGY SYLLABUS FOR THIRD YEAR (Multiple Choice Question (B.Sc. Microbiology Basic Techniques in Microbiology (MB 112): SAVITRIBAI PHULE PUNE UNIVERSITY B. Sc. Degree Course in MICROBIOLOGY SYLLABUS FOR FIRST VEAR Food and Dairy Microbiology (MB 336): SAVITRIBAL PHULE PUNE UNIVERSITY B. Sc. Degree Course in MICROBIOLOGY SYLLABUS FOR THIRD YEAR Medical Microbiology - I (MB 331): SAVITRIBAL PHULE PUNE UNIVERSITY B. Sc. Degree Course in MICROBIOLOGY Syllabus for the third year Bacterial Physiology and Fermentation Technology (MB 212): SAVITRIBAL PHULE PUNE UNIVERSITY B. Sc. Degree Course in MICROBIOLOGY SYLLABUS FOR Medical Microbiology and Immunology (MB 211): SYLLABUS FOR SECOND (Implemented from the academic vear Immunology I (MB 334) (Multiple Choice Question (B.Sc. Microbiology) Techniques Basic in Microbiology Microbial Agriculture Objective Pattern) Practical Handbook coff Microbiology Objective Pattern on State Eligibility Test (SET) for Life Science: Guide for SET exam aspirants F.Y.B.Sc MB 203 Microbiology Practical II: As per the revised syllabus of Kavayitri Bahinabai Chaudhari North Maharashtra University Basic Techniques in Microbiology-II: Practical Handbook S.Y.B.Sc. Microbiology (Practical Handbook) M8-303: Practical Paper-III:

Mr. Mayur J. Thakare is working as a Assistant professor in Microbiology at department of Microbiology in Shri. Dnyaneshwar Maskuji Burungale Science & Arts College, Shegaon, Buldana. He had qualified CSIR-JRF, CSIR-UGC-NET, MH-SET & GATE. He was associated as a Junior Research Fellow at Department of Biological Sciences, IISER Bhopal, Bhopal. He has 9 years of research and 8 years of teaching experience in Microbiology for Undergraduate and Post Graduate classes. He has four research articles published in UGC-CARE list International Journals.

Dr. Deepika Nilesh Jain is working as an Assistant Professor and Head, P.G. Department of Microbiology, Ghuiam Nabi Azad Arts, Commerce and Science College, Barshitakli, Dist-Akola, Maharashtra, India. She has completed M. Sc and Ph. D. in Microbiology. She has ten years of research and teaching experience of graduate and post-graduate classes. Her area of research interest is Medical Microbiology. She has guided 5 students for the dissertation. She has published 16 research papers in various national and international journals. She has published one book entitled "Basic techniques in Microbiology". She was awarded with 15 awards, including "YOUNG SCIENTIST AWARD" from SSES Amravati's Science College, Congress Nagar, Nagpur. She is an editorial board member of the International Journal of Microbiology Society of India.

Priyanka Y. Jangid (Mrs. Priyanka Pranil Jain) is working as an Assistant Professor R.A. Arts, Shri M.K Commerce and Shri S.R Rathi Science

Mahavidyalaya, Washim, Maharashtra, India. She is pursuing her Ph.D in Microbiology. She completed her post-graduation from Department of Microbiology, M.N.I.A.S, Bikaner and qualified CSIR-UGC-NET. She has three years of teaching experience in Microbiology at Graduate and Post Graduate levels.

Chief Editor

Dr. Vijay D. Nanoty is working as Principal of one of the renowned institutes of Vidarbha, Shri RLT College of Science, Akola, Maharashtra, India. He has more than 35 years of teaching experience at UG and PG level in Microbiology. He is a recognized Ph.D. Supervisor and member of Board of studies in Biochemistry inclusive of Microbiology at Sant Gadge Baba Amravati University Amravati. He has supervised 8 students for Ph.D. degree and 4 students are currently working under his guidance. He has published more than 60 research papers and attended several national and international conferences. He has many awards to his credit as Best Principal (2020-21) award of SGB Amravati University, Best NSS Program officer Award (1999-2000). He also worked as State President of Microbiologist Society India, Maharashtra in the session 2019-20.

Content Editor

She is working as professor and head of the Department of Microbiology in Shankarlal Khandelwal Arts Science and Commerce College Akola. She is a member of faculty of science, a member of board of studies and a recognized research supervisor of Sant Gadge Baba Amravati University Amravati. She has 28 years of teaching experience and has completed two research projects funded by UGC. She has published 15 research papers in National and international journals and contributed as author and editor in 3 books. One student was awarded a Ph D and two students are working currently under

her supervision. She has organized 2 National conferences and has presented many papers in National and International conferences. Presently she is holding the responsibility of Divisional coordinator of Microbiologists Society, India for Amravati Division. She is a member of IQAC of the college and has shouldered several responsibilities such as Head of Science faculty of college, NSS program officer and coordinator of various college committees. She has undertaken many personality development activities.

Academic Editor

DR. RACHANA R. PACHORI (SHARMA) is working as an Associate Professor and Head in Department of Microbiology, UG, PG & Research section, Rajasthan Aryans Mahavidyalaya, Washim since 2007. She has qualified MH-SET and has teaching experience of 14 years in Microbiology for undergraduate and post- graduate classes. She is Member Board of Studies (BOS) in Biochemistry, Microbiology including Food Science as well as Recognized Ph.D. research guide in Sant Gadge Baba Amravati University, Amravati. She has completed one Minor Research Project sponsored by UGC, New Delhi. She is Coordinator for SGB Amravati university approved Career oriented programme entitled "Clinical laboratory technology". She is SPOC of NPTEL MOOC for R. A. College, Washim. She is appointed as an expert for academic audit at SGB Amravati university affiliated colleges, Washim district. She has authored total five books of National and International repute. She has more than 50 research papers on her credit in peer- reviewed journals. She has guided 62 post graduate research projects. She has 4 students registered for Ph.D. She has presented number of papers at national and international conferences. She is a Life member of the Microbiologist Society of India and the Indian Science Congress.

Introduction

Dear students, there are several experiments in Microbiology which are based on theoretical aspects. Basic knowledge of laboratory work is important for designing future research plans. It is very crucial for the students that they should learn research skills. However, there are some difficulties that are observed in the minds of students during a scientific demonstration of the practical courses due to a lack of detailed protocols. As a result, we have made sincere efforts to solve the problem in question through this book and provided not only up to date basic information but also experiments based on theoretical knowledge. This book has been written specifically as per the updated syllabus of Sant Gadge Baba Amaravati University, Amaravati. In general, we are sure that the book will be valuable for students to get up the mark in scientific knowledge.

CERTIFICATE

This is to certify that I	Mr./Mrs./Dr./Miss	
has success	fully completed the practical	course entitled
******	on	
Signature of	Signature of	Signature of
Course Teacher/ Internal Examiner	Head of Department	External Examiner

Index

Sr.	Title	Page no.	Sign Teacher	00
Mo.	A THE RESERVE OF THE PERSON OF	L'IIII	20	
1	Isolation of Pathogen from Unine Samples			
2	Isolation of Pathogen from Blood Samples			
3	Isolation of Pathogen from Sputum Samples		55	
4	Isolation of Pathogen from Pus and Wound Samples		St	
5	Pathogen Isolation from Cerebrospinal Fluid (CSF) Samples	7.3	73	
6	Pathogen Isolation from Cerebrospinal Fluid (CSF) Samples	0.5	1,1	
7	Isolation and Identification of S. aureus (Staphylococcus aureus)	(A)		
2	Isolation and Identification of Escherichia and	73	7.5	
9	Isolation and Identification of Proteus vulgaris	Ti-	i.e	
10	Isolation and Identification of Pseudomonos ceruginosa	T.	i.e	
11	Isolation and Identification of Salmonella typhi	2	2	
12	Isolation and Identification of Clostridium totoni	2	22	
13	Isolation and Identification of Strephococcus pyogenes	2	80	
14	Isolation and Identification of Streptococcus pneumoniae	-		
15	Isolation and Identification of Shigella species	Ë	-	
16	Isolation and Identification of Wibrio choloroe	W.		
17	Isolation and Identification of Mycobacterium tuberculosis			

18	Widal test	
19	VDRL Test	
20	Detection of Syphilis by using Rapid plasma Regin test (RPR test)	
21	C- Reactive Protein	
22	An anti-streptolysin 'O' (ASO), quantitative test.	
24	RA Test (Rheumatoid Arthritis Test)	
25	EUSA Text	
26	Latex Agglutination Test	\$-
27	Ouchterlony Double Diffusion	
28	Immunoelectrophoresis	
29	Single Radial Immunocliffusion	
30	Estimation of Ag-Ab response by Immunodiffusion	9
31	Estimation of Antigen-Antibody response by Immunoelectrophoresis technique	
32	To estimate the Hemoglobin concentration in the blood sample.	
33	Determination of Hemoglobin by Sahli's (acid haematin) method.	
34	Total leukocyte count.	
35	Total erythrocyte count.	
35	Determination of ESR.	
37	Estimation of ESR by Wintrobe method.	
38	Blood smear examination.	

39	EXAMINATION OF BLOOD SMEAR	3
40	Determination of bleeding time.	
41	Determination of blood clotting time.	
42	Prothrombin determination.	712 = =
43	Lab diagnosis of leukaemia.	
44	Study of Entamoeba histolytica.	
45	Study of Leishmania donovani	
46	Plasmodium	
47	Trypanasoma.	
48	Examination of stool.	
49	The faecal occult blood test (FDST).	
50	Microscopic examination of the stool sample.	
51	Preparation of stained slide for detection of larva/ova or cysts.	
52	Concentration method for examination of ova and cyst.	† †
53	Examination of stool.	
34	Antibiotic sensitivity test.	
55	Assay of antibiotic level in body fluids.	
56	Routine examination of urine.	
57	Routine analysis of urine.	
	Routine analysis of urine.	

Routine examination of urine.		
Routine energiss of urine.		
Determination of bile pigment.		
Determination of Urobifinogen.		
Microscopic analysis of urine.		
Routine Urine Analysis for normal constituents.		
Routine Urine Analysis for Abnormal constituents.	100	
	Routine enalysis of urine. Determination of bile pigment. Determination of Urobitinogen. Microscopic analysis of urine. Routine Urine Analysis for normal constituents.	Routine energysis of urine. Determination of bile pigment. Determination of Urobitinogen. Microscopic analysis of urine. Routine Urine Analysis for normal constituents.

Experiment No. 1 Isolation of Pathogen from Urine Samples

Aim: To isolate the pathogen from the urine sample

a) Collection:-

The sample should be fresh and evaluated quickly. Since urine is a good growth medium, the reaction at ambient temperature may alter the pH (from acidic to alkaline). The specimen must be delivered within 1–2 minutes; otherwise, organisms present in the specimen may proliferate, and the quantitative test result will be inaccurate. The midstream of a urine sample is collected in a sterile container.

- b) Laboratory Procedure:-
- i) Microscopic Examination:-

The 5 ml specimen is centrifuged at 300 rpm for 5 min, and the deposit is resuspended in a small amount of supernatant. After the large part of the supernatant has been decanted, a wet film is made from the resuspended deposit and examined for the presence of bacteria, puscells, and RBCs.

ii) Cultivation:-

The suspended deposit is used for inoculation on MacConkey Agar or Blood Agar plates for Gram positive and also inoculates on BP agar. These plates are incubated in an incubator at 37°C for a time period of 24 hrs. Organism identification is made by different tests such as cultural, morphological, and biochemical characteristics.

Observation:-

Observe the MacConkey's agar and Blood agar plates for the presence of typical colonies of the suspected pathogens.

ISBN:978-81-954818-3-5

M.Sc.II Semester III Practical VII (Applied Microbiology and Biotechnology)

Practical Handbook

As per Syllabus by Sant Gadge Baba Amravati University, Amravati

Authored by

Amol Prakash Nagrale Miss Pooja P. Mankar Edited by Prof. Dr. Aarti R. Deshpande Dr. Yamini Patil

Dr. Neerja Shrivastava

M.Sc. II Semester-III Practical-VII (Applied Microbiology and Biotechnology)

Practical Handbook

As per the syllabus of Sant Gadge Baba Amaravati, University,

Amaravati

Authors

Amol Prakash Nagrale,

Assistant professor, Department of Microbiology, Shri. Dnyaneshwar Maskuji Burungale Science College, Shegaon, Maharashtra, India.

Miss Pooja P. Mankar,

Ph.D. Scholar, Department of Microbiology, Shri Shivaji College of Arts, Commerce and Science, Akola, Maharashtra, India.

Chief Editor

Prof. Dr. Aarti R. Deshpande,

M.Sc.(Microbiology), CSIR –JRF, M. Phil.(Biotechnology), Ph.D.(Microbiology), Professor and Head, Department of Microbiology, Shankarlal Khandelwal College,

Akola, Mal.arashtra, India.

Academic Editor

Dr. Yamini Patil,

Associate professor and Head, Department of Microbiology, Shri.

Dnyaneshwar Maskuji Burungale Science and Arts College, Shegaon. Dist.

Buldana, Maharashtra, India.

Content Editor

Dr. Neerja Shrivastava,

Associate Professor in Botany, Department of Botany, Govt. PG College, Kota, Rajasthan, India.

ISBN: 978-81-954818-3-5 Edition: I (15 March 2022) Price:Rs.171/-

Declaration:

Any type of reproduction of this book through any media without the permission of the original author is strictly prohibited. Any violation of this will be a punishable crime under Indian Intellectual Property Rights Act.

© International Journal of Microbial Science 2021. All rights reserved. Visit us at https://theijms.com/

ISSN (online): 2582-967X Email: ijmsmcqbooks@gmail.com

Publisher Address:

My Rays Book Publication Center, Powered by International Journal of Microbial Science, Sr.no.66, Near Sai Baba Temple, Satav Nagar, Handewadi Road, Hadapsar, Pune-411028, Maharashtra, India.

Amol P. Nagrale is presently working as an Assistant Professor in Department of Microbiology, Shri. Dnyaneshwar Maskuji Burungale Science and Arts College Shegaon, District Buldana, Maharashtra, India. He has qualified NET (UGC - CSIR rank 47) 2011. He completed his Master degree in Microbiology from Sant Gadage Baba Amravati University, Amravati. Additionally, he is presently pursuing his Ph.D in Medical Microbiology. To add, he has 9 year of teaching experience at Undergraduate level. He is actively engaged in the research from last 5 years and has 10 publications in national and international journals. His areas of interest are Medical Microbiology, Immunology, Molecular Biology, and Cell Biology. He has delivered many guest lecturers, in different colleges.

Miss Pooja P. Mankar is working as Ph.D. Scholar at Department of Microbiology, Shri Shivaji College of Arts, Commerce and Science, Akola, Maharashtra, India. She passed the national level CSIR and ASRB NET exams. She has three years of expertise in academic research and teaching. She has mentored 7 students for the master's dissertation. She has 4 research articles published in esteemed international journals. She contributes her expertise to the International Journal of Creative Research Thoughts as a functional member.

She is a professor and head of the Department of Microbiology atShankarlal Khandelwal Arts Science and Commerce College in Akola. She is a member of the faculty of science, a member of the board of studies, and a recognized research supervisor of Sant Gadge Baba Amravati University Amravati. She has 28 years of teaching experience. She has successfully accomplished two research projects funded by UGC. She has 15 research articles published in National and International journals and contributed as author and editor in 3 books. One of her students was received a Ph.D., and two others are now currently under her guidance. She has organized 2 National conferences and has presented many papers at National and International conferences. Presently she is holding the responsibility of Divisional coordinator of Microbiologists Society, India for Amravati Division. She is a member of IQAC of the college and has shouldered several responsibilities such as Head of Science faculty of the college, NSS program officer, and coordinator of various college committees. She has undertaken many personality development activities.

Academic Editor

Dr. Yamini Sadashivrao Patil is an Associate Professor and Head of the Department of Microbiology at Shri Dnyaneshwar Maskuji Burungale Science and Arts College in Shegaon, Maharashtra, India. She has 15 years of research experience. Environmental Microbiology, Molecular Biology, and Physiology are three of her primary research interests. She has 18 research articles published in national and international journals, as well as two books in domain of microbiology. She has attended several Microbiology and Biotechnology conferences, seminars,

Workshops, and symposia over her academic career. She supervises Ph.D. students at SGBAU Amravati

Content Editor

Dr. Neerja Shrivastava is an Associate Professor of Botany at the Govt. PGG College in Kota, Rajasthan. She has about 23 years of expertise in both teaching and research. She has supervised over ten Ph.D. and seven M.Phil students over her 23 years of employment. She has also worked on projects supported by the UGC and the Department of Science and Technology in the domains of microbiology and plant science. She has over 35 research papers and articles published in distinguished international and national journals. She is the author of ten books on subjects relating from microbiology to plant science. She is a VMOU, Kota, accredited Counselor. She is a winner of the "State Level Award" presented by the Rajasthan Government's Higher Education Department. She serves on the Editorial Boards of several prestigious international and national journals. She is a member of the Indian Botanical Society as a Fellow Member. Additionally, she is a life member of the Microbiologist Society of India and the Indian Association of Microbiologists.

Introduction

Dear students, some investigations in Microbiology are theoretical in nature. Basic laboratory expertise is necessary for developing future research goals. It is critical for pupils to develop research abilities. However, owing to a lack of defined procedures, several challenges are seen in the minds of students during a scientific manifestation of the practical courses. As a consequence, we have made earnest attempts to resolve the issue at hand via this book, including not only current fundamental information but also experiments grounded in theoretical understanding. This book has been developed exclusively for the Sant Gadge Baba Amaravati University's new curriculum. In summary, we are certain that the book will be useful to learners seeking to improve their scientific understanding.

CERTIFICATE

This is to certify that Mr./Mrs./Dr./Miss
has successfully completed the practical course entitled
on

Signature of Course Teacher/ Internal Examiner

Signature of Head of Department Signature of External Examiner

INDEX

Sr.na,	Title	Page No.	Signature of Eeacher	Author
	Part A			
1	Agarosa Gel Electrophareso	97		Arrical Magnas
2	Restriction digestion of	11		Acres Magray
3	ONA Reaction	3.4		From F. Minni
4	ORUX Molecular size determination.	17		Poster & Adiana
4	DANY Enderburged	22		Principle P. Affording
6	lauthern mybridization	27		França & Adamia
7	Mestration Magging	3.3		Strangia of Advanting
4	In white Transportation	376		Principle of Asserting
9	bourners discome	11		Principa it Affairba
\$12	Suarthern Marting	4.8		Portur P. Marika
11	Planeted Preparation	51		Preschie & Aviantia
1.3	Genomic Shot leatinger	56		Acres Magnate
1.5	Gene clioning	59		Francis F Adamilar
	Part 8			1
2.8	stantarial game engineeous	64		Punju F Manifel
21	Builtierial Councilorimations	70		Acresi Nagraile
15	Banharial Compagations	12		Armed Nagratie
17	Bachrelat framaduntine	25		Acres Magrafit
1.8	Whole Blood DNA extraction	83		Principa P. Adiambigo

Experiment No. 1

Title: Agarose Gel Electrophoresis

Aim: To Study Agarose Gel Electrophoresis

Introduction:

Agarose gel electrophoresis is a powerful method for the separation of DNA, RNA, or proteins based on molecular weight and electric charge. It is a common experiment carried out in domain of molecular biology, biochemistry, and genetics. Natural Agarose polymer is extracted from seaweed. On heating agarose in buffer, hydrogen bonding causes formation of porous matrix on gradual cooling.

Electrophoresis technique used to separate charged molecules in agarose or acrylamide gel. DNA is a negatively charged biomolecule at a neutral pH. When an electric current is applied transversely in the gel, the charged DNA is electrophoresed towards a positive (+ve) end (the anode). The speed of migration of DNA through the gel is relative to molecular size, where smaller fragments move more quickly than large size DNA fragments. Other prominent factors affecting the migration of charged molecules inside the matrix are agarose concentration, confirmation of DNA, and applied current/ voltage. The movement is monitored by observing the migration of a visible loading dye transversing through the gel. Commonly used dyes are Xylencyanol and Bromophenol blue, which migrate ata similar speed as double-stranded fragment DNA. These track dyes are -ve charged, low molecular weight compounds that are placed beside each sample at the starting point. As the tracking dye reaches towards the anode, a run is terminated.

Various buffers have been suggested for DNA electrophoresis. Trisacetate EDTA and Tris-borate EDTA are the most often used buffers. The TAE is the most often used technique because its efficiency and resolution. Due to the variation in ionic strengths between these two buffers, DNA migrates at a different pace. Buffers are critical for pH maintenance and also provide ions to enhance conductivity.

Due to the fact that DNA is inherently colourless, it is generally not visible on the gel. As a result, the gel is stained with a dye after electrophoresis. When sufficient DNA material is present to interact with the dye, a distinct band is detected. Contrasting dark-colored DNA bands in colourless gel is conspicuously visible. An intercalating dye called Vision: To transform each person into the world-class researcher, writer and publisher to sustain the universe. Mission: Book Writing and Publication Campaign 2

M.Sc.I Semester II Practical III (Enviornmental Microbiology and Biodiversity) Practical Handbook

As per Syllabus by Sant Gadge Baba Amravati University, Amravati

Authors

Dr. Kavita Chahal,

Ph. D (Microbiology), B. Ed, CSIR-NET, (Life Science), ICAR-NET (Agr. Mb),
Assistant Professor, Department of Botany,
Government College Bichhua Chhindwara,
Madhya Pradesh 480111.

Priti Ashok Kharat.

Assistant Professor and Head, Department of Microbiology, Late Ku. D. K. Banmeru Science College, Lonar, District Buldhana, Maharashtra, India.

Dr. Amol Dhanyakumar Adhao,

Assistant Professor and Head, Department of Microbiology, Late Pushpadevi Patil Art's and Science College Risod, District-Washim, Maharashtra, India.

Dr. Prasad M. Deshmukh.

Assistant Professor, Department of Microbiology,
Shri Dnyaneshwar Maskuji Burungale Science and Art's College,
Shegaon - 444203,
Dist- Buldana, Maharashtra, India.

Editors

Dr. Anil Mahadeorao Garode,

Former Professor and Head,
Department of Microbiology, Shri Shivaji Science and Arts College,
Chikhli, District Buldana, (Maharashtra).

Dr. Dnyansagar D. Bhokare,

Professor,

Department of Microbiology, Shankarlal Khandelwal Arts, Science & Commerce College, Godbole Plot, Akola, Maharashtra, India.

Environmental Microbiology and Biodiversity

Practical Handbook

M. Sc. I Semester-II Practical-III

As per the syllabus of Sant Gadge Baba Amaravati, University, Amaravati

Authors

Dr. Kavita Chahal,

Ph. D (Microbiology), B. Ed, CSIR-NET, (Life Science), ICAR-NET (Agr. Mb),
Assistant Professor, Department of Botany,
Government College Bichhua Chhindwara, Madhya Pradesh 480111

Priti Ashok Kharat,

Assistant Professor and Head, Department of Microbiology, Late Ku. D. K. Banmeru Science College, Lonar, District Buldhana, Maharashtra, India.

Dr. Amol Dhanyakumar Adhao,

Assistant Professor and Head, Department of Microbiology, Late Pushpadevi Patil Art's and Science College Risod, District-Washim, Maharashtra, India.

Dr. Prasad M. Deshmukh,

Assistant Professor, Department of Microbiology, Shri Dnyaneshwar Maskuji Burungale Science and Art's College, Shegaon - 444203, Dist- Buldana, Maharashtra, India.

Editors

Dr. Anil Mahadeorao Garode.

Former Professor and Head, Department of Microbiology at Shri Shivaji Science and Arts College, Chikhli, District Buldana, (Maharashtra).

Dr. Dnyansagar D. Bhokare,

Professor, Department of Microbiology, Shankarlal Khandelwal Arts, Science & Commerce College, Godbole Plot, Akola, Maharashtra, India.

ISBN: 978-81-954818-4-2

Declaration:

Any type of reproduction of this book through any media without the permission of the original author is strictly prohibited. Any violation of this will be a punishable crime under Indian Intellectual Property Rights Act.

© International Journal of Microbial Science 2021. All rights reserved. Visit us at https://theijms.com/ ISSN (online): 2582-967X

Publisher Address: My Rays Book Publication Center, Powered by International Journal of Microbial Science, Sr.no.66, Near Sai Baba Temple, Satav Nagar, Handewadi Road, Hadapsar, Pune-411028, Maharashtra, India.

Email:ijmsmcqbooks@gmail.com

Price: Rs.180/-

Dr. Kavita Chahal is an Assistant Professor in the Department of Botany, Government College Bichhua, Chhindwara, Madhya Pradesh. She obtained Ph.D in Microbiology; and has cleared CSIR-NET in Life Sciences and ASRB-NET in Agricultural Microbiology. She is an Editorial Board Member of American Journal of Life Sciences; International Journal of Current Science Research & Review; International Journal of Scientific Research in Biological Science; International Journal of Current Science Research & Review; Vidwan, an MHRD project (ID:175930), Active RMS member (ID: 116866) of International Journal of Creative Research Thoughts; and Member of Indian Academy of Sciences, Delhi. She has to her credit 24 Research papers, 9 Book chapters, and 6 Books as an Editor.

Priti Ashok Kharat is working as an Assistant professor and Head of, Department of Microbiology, Late Ku. D. K. Banmeru Science college, Lonar, District Buldhana, Maharashtra, India. She has 2 years of teaching experience

at the graduation level. She has completed post-graduation from P.G. Department of Microbiology at S.G.B.A. University, Amravati, and also qualified MH-SET exam. She has published one research paper in the international journal entitled "Alkaliphilic Bacillus flexus: A potential source of lipase producer for industrial and medical application".

Dr. Amol Dhanyakumar Adhao is working as an Assistant professor and Head of, Department of Microbiology, Late Pushpadevi Patil Art's and Science College Risod, District-Washim, Maharashtra, India. He has 10 years of teaching experience in Bachelor's classes. He has completed post-graduation from P.G. Department of Microbiology, R. A. College,

Washim from S.G.B.A. University, Amravati, and Ph.D. from P.G. Department of Microbiology, from S. G. B. A. University, Amravati. He has published one practical book as editor and ten research papers in national and international journals.

Dr. Prasad M. Deshmukh (M. Sc. Ph. D) is working as an Assistant Professor in the Department of Microbiology at Shri Dnyaneshwar Maskuji Burungale Science and Art's College, Shegaon, Dist - Buldana, 444203. He has a total of 6 years of teaching experience for undergraduate and postgraduate students as well as 4 years of industrial experience in the Food, Feed, and Agriculture industry in the field of Microbiology. He has also been nominated as a member of the Board of Studies in Microbiology in Autonomous and DBT star status college to coordinate research, teaching, extension, and academic activities in college as well. In addition, he formerly worked as a Head of, Research & Development Department at Chaitanya Group of Industries. Chaitanya Group of Industries actively manufactures Bacteriological Media Ingredients, Active Pharmaceutical Ingredients, Nutraceuticals, Seasoning Flavor Enhancers, Protein-Based Products, etc. He has published 5 research papers in National and International Journals.

Editors

Dr. Anil Mahadeorao Garode was the professor and Head of, Department of Microbiology at Shri Shivaji Science and Arts College, Chikhli, Dist. Buldana (Maharashtra) since 1985. He is a recognized research supervisor for Ph. D. in Sant Gadge Baba Amravati University, Amravati, and guided 08 Ph. D. students, 05 M. Phil. Students. He guided more than 100 post-graduate research projects in Microbiology, Biotechnology, and Biodiversity in different Universities. He has the credit for the publication of about 100 research papers in National and

International Journals and presented 97 research papers in National and International Conferences, Seminars, and Symposia. He is on the mailing list of WHO and WEDC, London. Submitted scientific suggestions to the Committee of Public Accounts, Parliament of India on the "Cleanliness and Sanitation in Indian Railways" to improve sanitation and related infrastructure in Railways. He was nominated as an awardee for Environmentalist of the Year 2018 by the National Environmental Science Academy, New Delhi. Work as Resource Person in Sanitation Hygiene Campaign for Zilla Parishad, Buldana during, International Sanitation Year – 2008, a worldwide activity of World Health Organization. He has 36 years of teaching experience and 03 years as a Principal. He was a member of the Board of Studies in Microbiology, Faculty of Science and RRC Sant Gadge Baba Amravati University, Amravati.

Dr. Dnyansagar D. Bhokare is presently working as a Professor in the Department of Microbiology, Shankarlal Khandelwal Arts, Science & Commerce College, Godbole Plot, Akola (MH). He engaged in the higher education and research field since the last 20 years. He has completed three minor research projects sponsored by UGC. He has presented 18 research papers in various national and international conferences and seminars and also wrote and published 23 research papers in renowned and UGC approved Journals. He is a Ph. D supervisor and BOS member of Biochemistry including Microbiology and Food science Board of Sant Gadge Baba Amravati University, Amravati.

He worked as an NSS Program officer for three years in his college and received an appreciation award for his outstanding work in the blood donation field from SGB Amravati University, Amravati. As a career counselor, he motivates and guides the students in his college. He is actively involved in social, cultural and environmental activities. He received different awards for eco-friendly Ganesh making from Jai Maharashtra News Channels, Dainik Lokmat and Sakal. He is a drama artist and Executive member of Akhil Bhartiya Natya Parishad Mumbai, Shaka Akola and also received a silver medal for acting from the Cultural

INDEX

Sr. No.	Title	Page no.	Sign of Teacher
	Section I		
1	Examination and estimation of water for Ammoniacal Nitrogen	08	
2	Examination and estimation of water for Nitrate		
3	Examination and estimation of water for Nitrite	15	
4	Examination and estimation of water for Dissolved Oxygen	18	
5	Examination and estimation of water for Chloride	23	
6	Examination and estimation of water for Sulphates	27	
7	7 Examination and estimation of water for Chemical oxygen demand		
8	8 Examination and estimation of water for Biochemical Oxygen Demand		
9	Examination and estimation of water for Phosphates	39	
10	Examination and estimation of water for Calcium and Magnesium	42	
11	Examination and estimation of water for Total Hardness	47	
12	Examination and estimation of water for Alkalinity	52	
13	Examination and estimation of water for Total Dissolved and Suspended Solids	56	
	Section II		
14	Isolation of Salmonella from Polluted Water	61	
15	Isolation of phage from sewage	65	
16	Assay of bacteriophage	71	
17	Enumeration of coliform and fecal Streptococci by Most Probable Number technique	78	
	Section III		
18	Enrichment of chemolithotrophs, acidophiles, methylotrophs, halophiles, and thermophiles.	86	5
19	Enrichment and isolation of aliphatic hydrocarbons, phenol, and parathion degraders.	93	
	STUDY TOUR REPORT		
20	Study/education tour and report submission.	94	

SECTION I:

1. Title: Examination and estimation of water for Ammoniacal Nitrogen

Aim: - To estimate the given water for Ammoniacal Nitrogen

Principle: - This method consists of two procedures for determining ammonia and biological nitrogen i.e., the first one, the concentration of ammonia from taster into a boric acid solution, and the second one is, titration of ammonia in contrast to a standard sulphuric acid solution. The residue is utilized to determine organic nitrogen after the ammonia has been extracted from the sample. When heated in the presence of sulphuric acid, nitrogen in several biological classes is transformed into ammonium sulfate. To elevate the boiling point of sulphuric acid up to 370° C, two catalysts such as potassium sulfate and copper sulfate are used. Carbon dioxide is produced when organic matter is oxidized. After the ammonia from organic nitrogen has been free, it is purified and the results are calculated as described above. The pH of the sample or processed fluid is elevated to 9.5 before distillation in both situations to induce the creation of ammonia, which can remain purified using haze.

Ammonium ion

The condensed ammonia is engrossed in boric acid. Back titration is performed with a strong standard acid to determine that the ammonia reacts with boric acid.

Academic Year 2020-21

ISBN: 978-81-95551-4-9

Role Of Academic Libraries In the Human Resource Development Of Information Technology

Ranjana K. Jawanjal

Librarian Shri Dnyaneshwar M. Burungale Science & Art College, Shegaon Dist-Buldana

Abstract:

This paper reviews about to show a critical view of changing role of academic libraries in the HRD and ICT environment. HRD and ICT have an importance part of all libraries operations and information services. ICT is a driving factor in the process of globalization in new digital era. The management of library human resources is an essential part of how a library is going to attain its targets. The alignment of human resources management implies to integrate decisions about workforce with decision about the outcomes an organization is trying to achieve. When these areas are well planned and successfully implemented, they lead towards the accomplishment of library's mission with the help of right people with right skills and in the right positions. The main objectives of this paper to appraise the prevailing status of Human Resource Management libraries, how iteffects on the process of strategic management, Development of IT projects and library services.

Keywords: Human Resource Development, Information Technology Introduction:

Development of nation is solely dependent on the management of the human resources present in the nation. If this human resource is not coped properly then it is of no use for the nation. One of the fundamental primal matters for the better advancement of the society is civilised human being. HRD is organization, academic library professional staff development and new ICT concept training is the prominent fragment of the immense human resource development. HRD plays the significant role in the chrysalis of the library. HRD is amalgamation of management and operative functions. Any organization's success is solely dependent on the influence of human resource development as training of the employee's plays noteworthy role in its effective development.

Human Resource Development (HRD):

Human Resource is a collective term for all the people employed by an organization, agency, or institution. Also, the administrative department is responsible for matters pertaining to employment (hiring, evaluation, promotion, termination, etc.). A formal definition of personnel / HRM is that, it is a function performed in organizations that facilitate the most effective use of employee to achieve organizational i.e. Library and Information centres and individuals goals.Large independent libraries and Library system have their own human resources office. Libraries that function as a unit within a larger organization may rely on the parent organization for such services. Human Resource Development (HRD) is a process of raising productive potentialities of manpower resources in terms of knowledge, skills and capabilities through appropriate mechanisms such as education & training, counselling, career planning, performance or self-appraisals, awards or rewards etc. among all these, education and training play a vital role in strengthening both

March, 2021

ISBN: 978-81-95551-4-9

academic and professional capabilities of human resource to meet the goals of an organization. This is also true in case of Library and information profession to develop appropriate human resources to work in different types of libraries / information and documentation centres and in different environment as well.

Activities of HRD:

It comprises the number of activities. They are as follows:

- Equal employment opportunity programs
- Task analysis
- Human Resource Planning (HRP)
- Employee Retirement, selection and orientation
- Career development &counselling, performance evaluation and training & development; n Compensation and benefit
- Safety and health
- Employee relation
- Discipline and control
- Quality of work

Need for Human Resource Development in Academic Libraries:

Human Resource Development is required to cultivate proficiencies: 1. it is almost impossible for the organization to survive, to make a mark, on the society if their staffs are not proficient with the prerequisite understanding, abilities and approach. 2. The prime aim of the For-profit organization is to expand, evolve and develop their work such that they minimize the cost and delays while maximize the quality and customers satisfaction.

3. Human resource development need is whereas traditional human resource development methods have their relevance and usefulness. 4. Human programmers bring about an organization-wide alteration which is envisaged in the thought of human resource development. Functions of Human Resource Development in Academic Libraries.

The most frequently used HRD mechanisms are:

Training: Improving the library professional staff ICT based knowledge, skills and attitudes changing training are following:

- Library Professional Staff is Orientation and refresher course training provided.
- Skills and technical training
- Coaching
- Library Management training
- Library Supervisor development training

Information Technology (IT):

The term 'Information Technology' in English, 'Informatique' in French, 'Informa tika' in Russian encompasses the notion of Information handling in other words, Electronic Technologies for collecting, storing, processing and communicating information. There are two main categories: those that process information, such as computer system and those that disseminate information such as telecommunication system. The term can generally be understood to describe system that combines both, but nowadays the more

March, 2021

ISBN: 978-81-95551-4-9

accurate Information and Communication Technology (ICT) is more commonly used.

Information Technology IT has three unique proporties such as

• The growth of Information (and technology) is irreversible. It is possible for us to forget something and ignore others. But once something becomes known, it is almost impossible to make it unknown. Similarly, once something has been invented one can't uninvent it.

The growth of information and technology is exponential; the more is known the more is invented, the easier it is to known still more, and invent still more.

There is no faceable upper limit to the growth of knowledge or inventions.

Impact of New Technology on Academic Libraries:

Changes in information communication technology have generated corresponding changes in society, higher education and academic libraries as follows.

- Shift from paper based resources to electronic one,
- Shift from acquisition to accessing the resources.
- Media convergence in ICT resources.
- Knowledge about web page designing and e-books, e-journals in essentials.
- Library users demands for access facilities in his place at his desktop.
- Growing importance of consortia agreements for e-journal subscription.
- Provision of resource sharing to overcome budgetary constraint.
- Maintaining of Internet, LAN, and WAN Facilities with faster access, getting access.

Role of Academic Libraries:

The new technology as we have been made greater impact on the structure, functioning and services of academic libraries. Library service is no more confined to the four walls of the library. Printing material documents are supplanted by electronic and digital resources. In the new environment user-librarian interaction is reduced to the minimum. Users are adapted to the use of electronic sources of information. Library may at most become an intermediary in the information transfer chain. In future users can have direct access to the source and the library may conveniently be bypassed. It is in this context librarian having to re-orient their services to provide easy access and conserve the time of research potential. Users need not commute to the library for information. Library of the future will be a reprocessing centre where information is gathered, processed, packaged in a suitable way so that the packet contains information tailormade to the needs of the users.

Conclusion:

HRD mechanisms should lead to the generation of HRD processes like role clarity, performance planning, development climate, risk. Taking and dynamism in library staff. Such and HRD process should result in developing more competent, satisfied and committed people, who, by their contribution would make the organization, grow. Such HRD outcome influence organizational effectiveness. Information communication technology is not a technology but also it manages with library objectives with the adoption of ICT, libraries can face the new information techniques. ICT has generally affected the information environment. The Librarians have to skilful awareness regarding the management of information. Due to skill up gradation among the library professional's library render the best service and give the more satisfaction of the library customers.

March, 2021

ISBN: 978-81-95551-4-9

References:

- Alexa.(2012) Current Trend in Library Science, New Delhi, Elsiver India Pub. 2012. Peg. 174-189.
- 2) Gamit, Rajeshkumar M.(2018) Role of Academic libraries in the Human Resource Development and Information and Communication Technological Environment: An Overview. IJAPRR International Peer Reviewed Refereed Journal, Vol. V, Issue IV, p.n. 57-69.
- 3) Rajashekara G.R.(2017) Human Resource Development in Indian Software Technology Libraries: A Study with Special Reference To Library Professionals Training And Development Facilities. International Journal of Digital Library Services. Vol. 7 p.n. 38-46.
- 4) Saha. Nimai Chand(2007) Training & Development Of Library Professionals For It Application In University Libraries: An Overview. Convention PLANNER -2007. GauhatiUniversity,Guwahati, p.n. 293-302.
- 5) Jabeen, HumeraMah (2016) The Need of Strategic Human Resource Management for the Development of Information Technology in Libraries. Qualitative and Quantitative Methods in Libraries (QQML) 5: p n 515-525.

NATIONAL CONFERENCE ON MULTIDISCIPLINARY RESEARCH NCMR-2021

ORGANIZED BY

SHRI SHIVAII EDUCATION SOCIETY AMRAVATTS SHRI PUNDLIK MAHARAJ MAHAVIDYALAYA, NANDURA

IN COLLABORATION WITH

DEPARTMENT OF LIFELONG LEARNING AND EXTENSIO SCE AMPAVATI UNIVERSITY, AMPAVAT

LIBRARY

ISBN-978-81-951551-4-9

March, 2021

ISBN: 978-81-95551-4-9

29	Impact Of Karmayoga On Social Relationship Dhananjay Narayan Kokil	139		
30	Participation of Youth in Elections Dr.Rajendra Korde	142		
31	A qualitative study of different adverse impact on girl's education due to COVID-19 pandemic Pooja Alone	146		
32	Gender Discrimination and Human Rights Dr. R.G. Suralkar	151		
33	Role of information technology in enhancing sports Performance Ulhas V. Bramhe	154		
34	Vocational Education & Skill Developement In India Miss - Vrushali W. Warade.	158		
35	Nobel Prize winner Abhijit Vinayak Banerjee and his Research Understanding Development and Poverty Alleviation. Dr. S.M.Kalakhe	162		
36	Impact of Information Technology on Indian Economy Komal Prabhakar Ladhe			
37	Entrepreneurship and Indian Economy Dr. P. N. Ladhe	172		
38	Black Money and Indian Economy Prof. Dr. Prashant S. Vairalkar /Prof. Purushottam M. Kute			
39	Atrs : A New Tech To Civil Avaition Security Gireeshan.P., / Beulah Shekhar			
40	Role of Library in Indian Society Dr. Gavhane Maharudra Prabhu	188		
41	Online Resources And Services In Virtual EraProf. Pratiblea N. Atram	192		
42	Application of Ontologis in Academic Digital Libraries Prof. Atul D. Vikhe	195		
43	Role Of Academic Libraries In the Human Resource Development Of Information Technology Ranjana K. Jawanjal	199		
44	Impact of New Technologies on Information Services Prof. Shubhangi Akotkar			
45	Inevitable ICT Components and its impact on Library and Librarian Professionals of the Academic Library Dr. Sunil D. Belsare	207		
46	Trends, Opportunities and Scope of Libraries During Covid-19 Pandemic Situation Mrs. Rakte Jyoti Bhausaheb	211		

ISBN: 978-81-95551-4-9

March, 2021

Studies Of Interaction Of Lightwith Different Concentration Of Ligands In Various Media By Refractrometry.

G.D.Tambatkar, Y.P.Wayal

Department Of Chemistry, Shri.D.M.Burungale Science & Arts College, Shegaon – 444 203 Dist: Buldhana (Maharashtra) India

ABSTRACT

The additive properties such as Refractive index, Molar polarizibility and molar refractivities of some heterocyclic drugs such as **Chlorothalidon** -2-chloro-5-(1-hydroxy-3-oxo-1,2-dihydroisoindol-1-yl)-benzenesulfonamide.. **Doxycycline** i.e. 4-(dimethyl amino) 1,4,4a,5,5a,6,11,12a octahydro 3,6,10,12,12a Pentahydroxyl-1,11-dioxo naphthacence-2-carboxamide .have been studied in DMSO, DMF and THΓ media at 27±0.1°C temperature and concentration.

The values of molar refractivity(R) and molar polarizibility (α) are found to be decreased with decreasing the concentration of solute.

Key wards: Additive property, Doxycycline

INTRODUCTION-

Refractive index is one of the important additives properties of liquid. When a ray of light passes from one medium to another, it suffers to refraction, that is a change of direction. If it passes from less dense to more dense medium, it is reflected towards the normal to form angle of refraction (r) which is less then angle incidence (i). The refractive index is the ratio of the velocity of light in vacuum to that in the medium and it depends upon the temperature and wave length of light. The properties of liquid such—as refractive index, viscosity and ultrasonic velocity of binary mixtures are studied by many workers¹⁻³. Mahajan⁴ has studied molar refraction and polarizability constant of 2-amino-5-chloro benzene sulphonic acid in different percentage of dioxane-water mixture. Burghate⁵ and Agrawal⁶ studied the refractive indices in mixed solvents. Oswalet al⁷ have studied dielectric constants and refractive indices of binary mixtures. Ikhe⁸ has studies molar refraction and polarisability constant of pyrazoles and isoxazoles in different percentage of dioxane-water mixtures. Meshram et al³⁶ studied the molar refraction and polarizibility constant of Al(III), Ce(III) and Fe(III) complexes with some substituted isoxazolines, pyrazole and pyrazolinerefractometrically.

However study of molar refractivity and molar polarizibility constant of novel compounds such as **Chlorothalidon-2**-chloro-5-(1-hydroxy-3-oxo-1,2-dihydroisoindol-1-yl)-benzenesulfonamide and **Idoquinol** -5.7 di-iodo-8 – quinolinol in non aquous solvent such as THF,DMF and DMSO under identical set of experimental conditions which could cover manifold aspect of solute-solvent interaction is scanty.

ISBN: 978-81-95551-4-9

Chlorothalidon Doxycycline Therefore the present work is undertaken to make the systematic study of above novel compounds refractometrically at 27°C temperature.

EXPERIMENTAL:

Above novel compound are extensively used as drugs in pharmaceutical. These compounds provide the photographic material with good storage stability even at high temperature and high humidity. The compounds are synthesized by standard method and purity is checked by M.P, TLC, IR, and NMR.etc.

The solution of the compounds are prepared in different solvents (THF,DMF,DMSO etc.) by dissolving an appropriate amount by weight. All the weighing are made on MechanikiZactadyPrecyzying Gdansk balance made in Poland (±0.001gm). The accuracy of density measurements is within 0.1Kg/m⁻³.

The refractive index of solvent and solutions are measure at different concentrations by Abbe's refractometer having accuracy with $(\pm 0.01 \text{unit})$. The temperature of prism box maintained constant by circulating water form thermostat at $27\pm~0.1^{\circ}\text{C.Refractometer}$ is initially calibrated with glass piece (n=1.5220) provided with the instrument,

The molar refraction of solvent and solution mixtures are determined from

$$Rm = \begin{pmatrix} n^2 + 1 \\ n^2 - 1 \end{pmatrix} \frac{M}{d}$$

 $Rm_{(solute)} = X_1Rm_1 + X_2Rm_2$

Rm→ molar refraction, n _ sefractive index, d _ density of solution,

No → Avogadro's number, α → polarizibility constant,

Rm1 & Rm2 ► molar refractivity of solvent and solute and

X1 & X2 mole fraction of solvent and solute in solution.

The molar refraction represents actual or true volume of the substances molecules in mole. The molar refraction of solute can be calculated as:

Rm (solute) =R (mixture)-R (solvent)

The refractive index of solvent and solution at different concentration are measured from Abbe's refractometer and the values of molar refraction and polaribility constants are evaluated and presented in tables 1 to 4 for different systems.

ISBN: 978-81-95551-4-9

Table

Molar refraction and polarizibility constant for Ligand 1 (Chlorothalidon) in DMF

R.I.	Rm	□x 10-23 cm3
1.417	200420000000000000000000000000000000000	0.002582
1.416		0.001288
1.414		0.0006503
1.4135		0.0003252
1,413		0.0001618
	R.I. 1.417 1.416 1.414 1.4135	1.417 (cm3 mole-1) 1.417 0.06509 1.416 0.032591 1.414 0.016390 1.4135 0.00820

Molar refraction and polarizibility constant for Ligand 1(Chlorothalidon) in THF

Molarity (M)	R.I.	Rm (cm3 mole-1)	X 10-23
0.01	1.418	0.1069	0.004241
0.005	1.414	0.0539	0.002138
0.0025	1.413	0.0270	0.001071
0.00125	1.412	0.0136	0.000539
0.000625	1.411	0.00682	0.000270

Molar refraction and polarizibility constant for Ligand 1(Chlorothalidon) in DMSO

Molarity (M)	R.I.	Rm (cm3 molc-1)	↓x 10-23 cm3
0.01	1.415	0.06800	0.002698
0.005	1.413	0.03427	0.001359
0.0025	1,4135	0.01718	0.000681
0.00125	1.412	0.00861	0.000341
0.000625	1.411	0.00431	0.000171

Molar refraction and polarizibility constant for Ligand2(.. Doxycycline) in DMF

Molarity	R.I.	Rm (cm3 mole-1)	Lx 10-23 cm3
(M) 0.01	1.415	0.06261	0.002484
0.005	1.414	0.03140	0.001245
0.0025	1.4135	0.01571	0.000623
0.00125	1.413	0.00826	0.000327
0.000625	1.412	0.00415	0.000164

Molar refraction and polarizibility constant for Ligand 2(Doxycycline) in THF

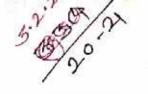
Molarity (M)	R.I.	Rm (cm ³ mole ⁻¹)	□x10 ⁻² cm ³
0.01	1.468	0.08094	0.003118
0.005	1.467	0.04058	0.001563
0.0025	1.467	0.02003	0.0007827
0.00125	1.466	0.01018	0.0003940
0.000625	1.464	0.005201	0.00006570

ISBN: 978-81-95551-4-9

March, 2021

Molar refraction and polarizibility constant for Ligand 2(D

(M)	R.I.	Rm (cm3 mole-1)	□x 10-23 cm3
0.01	1.416	0.08372	0.003321
0.005	1.413	0.04224	0.001675
0.0025	1.412	0.02123	0.0008423
0.00125	1,411	0.01065	0.0004225
0.000625	1.399	0.00545	0.000216


Result and discussion:

I could be seen from above tables (1 to 4) thatmolar refractivity and polarizibility constants decrease with decreasing the concentration of solution. It is also observed that the values of Rm and α are found to be grater in polar solvents, .THF and DMF. Polar solvents involve H-bonding, may from complex with solute and non polar solvent does not involve Hbonding and does not associate with solute. This may also be attribute to the fact that the dipole in the compound lies perpendicular to the longer axis of the molecules considerable dipole association (inter molecular attraction) takes place which would be accompanied by increase in polarizibility constants (a) as well as molar refractions (Rm) with increasing the concentration because of mutual compensation of the dipoles.

ACKNOWLEDGEMENT: Authors are thankful to the principal of D M Burungale College, Shegaonfor providing necessary facilities.

REFERENCES:

- Ind. J. Tech., 31, 581 (1993).T.M., Harogoppad S.B. Raikar S.K., Aminabhavi Τ. And Balundgi, R.H.
- Ind. J. Chem., 30, 711 (1991). And Jauhar S.P. Kapila V.P., Gupta C.M. 2. Asian J. Chem., 12(3), 659 (2000). And Sangal P.
- Verma R.P., Kumar V. 3. Ph.D. Thesis in Chemistry submitted to
- Mahajan D.T. 4. Amravati University, Amravati (1997).
- Oriental J. Chem., 16(3), (2000). P.B.andKedar Burghate A.S., Agrawal 5.
- 6.
- R.M. Oriental J. Chem., 17(1), 147(2001). A.S., Idrees M. Agrawal P.B., Burghate
- and Narwade M.L. : Ind. J. Chem., 26, 29 (1987). Rathnam M.V. Oswal S.L. and 7. Ph.D. Thesis in Chemistry submitted to Ikhe S.A. 8.
- Amravati University, Amravati (2004). J. Chem. Pharm. Res.3(3) (2011) 77-82. U.P., : Meshram 9.
- B.G., Khobragade Narwade M.L. and Yaul A.R.

ISBN: 978-81-95551-4-9

March, 2021

Synthesis And Characterisation Of S-Hepta-O-Benzoyl Lactosyl-1-Aryldithiocarbamates

Prof. Dr.Ku.Reena J. Deshmukh

Shri, D.M. Burungale Science and Arts College, Shegaon Dist-Buldhana.

Abstract :-

Several S-hepta-O-benzoyl lactosyl aryldithiocarbamates have been synthesized by the interaction of hepta-O-benzoyl lactosyl brounde with ammonium aryldithiocarbamates. The identities of these newly synthesized compounds have been established on the basis of usual chemical transformations, IR. ¹H NMR and Mass spectral studies, Antimicrobial activities of these compounds were evaluated.

Key words:- Lactosyl bromide, Ammonium aryldithiocarbamates, Lactosyl aryldithiocarbamate.

Introduction

S-lactosides are those compounds in which Lactosyl group or its derivatives are attached to the sulphur of sulphur derivatives exhibiting antifungal⁴, antitumor², anticancer³, antiviral⁴ and antimalarial activity⁸. Benzoyl derivatives of carbohydrate are interestingly becoming important in medicinal chemistry, industries and in many other ways⁶⁻⁹.

The present work deals with the synthesis of several S-hepta-O-benzoyl lactosyl aryldithiocarbamates. These were prepared by the interaction of S- hepta-O-benzoyl lactosyl bromide (1) and antinonium arydithiocarbamates (2a-g).

Result and discussion

Isopropanolic (40 ml) suspension of hepta-O-benzoyl factosyl bromide and ammonium phenyldithiocarbamate was heated on water bath at about 70 °C and kept at room temperature for 20 hrs, solid thus obtained was identified ammonium hydroxide. Clear filtrate on dilution with distilled water afforded a solid, which was purified by ethanol and water. It gave charring and was desulphurisable with alkaline plumbite. Its specific rotation was found $[\alpha]_D^{(3)}$ -182.28 (c, 0.980 in CHCl₃).

The IR. H NMR and mass spectral analysis 10-13 and elemental analysis (Table 1) clearly indicated the product and were assigned the structure as S-hepta-O-benzoyl lactosyl-1-phenyl dithiocarbamate. (3a).

When the interaction of hepta-O-benzoyl lactosyl bromide¹² was extended to other aryldithiocarbamates¹⁵, the related S-hepta-O-benzoyl lactosyl-1-aryldithiocarbamates (3b-g) were isolated.

ISBN: 978-81-95551-4-9

Where, $Bz = COC_*H_*$

R = a) phenyl, b) a-tolyl, c) m-tolyl, d) p-tolyl, e) a-Cl-phenyl, f) m-Cl-phenyl, g) p-Cl-phenyl.

Experimental

All the melting points recorded are found uncorrected. IR Spectra were recorded on Perkin-Elmer spectrum RXI FTIR Spectrometer, 'H NMR was obtained on Bruker DRX-300 NMR Spectrometer. Samples were prepared in CDCI, with TMS as an internal reference. The mass spectra were obtained on Thermo Fennigan LCQ Advantage max ion trap mass spectrometer. Optical rotations [n]_D⁻¹ were measured on the Equip-Tronics EQ-800 Digital Polarimeter at 31 of C in CHCI₃.

General Procedure

Synthesis of S-hepta -O-henzoyl lactosyl -I-phenyldithiocarbamate (3a-g)

Isopropanolic (40 ml) suspension of S-hepta-O-benzoyl lactosyl bromide (0.01M, 11.32g) and ammonium phenyldithocarbamate (0.01M, 1.73g) was heated on water bath at about 70°C until the suspension gets cleared. The clear solution was kept at room temperature for 20 hours. The solid formed was filtered off and identified as NH₄Br. The reaction mixture was mixed with 100 mL distilled water. It afforded solid (3a-g) The products were crystallized by ethanol-water. Purity was checked by TLC (Table 2).

Spectral data

3a. IR (KBr) · v 3458 cm⁻¹ (N-H). 1728 cm⁻¹ (C=O). 2973 (C-H Ar-stretching): 1453 cm⁻¹ (C-N). (characteristic of lactose unit) and 710 cm⁻¹ (C-S): ¹HNMR (CDCl₃): δ 8.05- 7.18 (40 H, m, Ar-H); δ 5.79 -5.39 (14 H, m, lactose ring protons); δ 7.16 (1H, s, N-H) MS (*m/z*): 1221 (M⁺), 1100, 1053, 976, 948, 932, 918, 579. Anal. Found : C, 66.40; H, 4.72; N, 1; S, 5.84 Calcd. For C₆₈H₅₅O₁₇NS₂ : C, 66.83; H, 4.5; N, 1.1; S, 5.24 %:
3b. IR (KBr) : v 3483 cm⁻¹ (N-H). 2976 (C-H Ar stretching). 1452 cm⁻¹ (C-N). 1271 cm⁻¹ (C-O). 1026 (characteristic of lactose unit) and 710 cm⁻¹ (C-S): ¹HNMR (CDCl₃):δ 8.07- 7.18 (39 H, m, Ar-H); δ 5.74 -5.43 (14 H, m, lactose ring protons): δ 6.1 (1H, s, N-H). MS (*m/z*): 1253 (M⁺), 1134, 1053, 976, 932, 579. Anal. Found : C, 64.88.; H, 4.01; N, 1 S, 5 Calcd. for C₆₈H₅₄O₁₇NS₂CI : C, 65.01; H, 4.37; N, 1.1; S, 5.09 %

ISBN: 978-81-95551-4-9

March, 2021

3c. IR (KBr): v3481 cm⁻¹ (N-H), 2972 (C-H Ar stretching): 1452 cm⁻¹ (C-N), 1271 cm⁻¹ O), 1068 (characteristic of lactose unit) and 710 cm⁻¹ (C-S); ¹HNMR (CDCl₃):δ 8.05- 7.18 (39 H, m, Ar-H); δ 5.79 -5.39;(14 H, m, lactose ring protons); δ 2.9 (3H, s, Ar-CH₃) δ 6.8-6.7(1H, s, N-H). MS (m/z): 1235 (M'), 1114, 1053, 976, 948, 932, 918, 579. Anal. Found: C, 66.88; H, 4.2; N, 1.1 S, 5.1 Caled, For C₆₈H₅₇O₁₇NS₂: C, 67; H, 4.6; N, 1.13; S, 5.1 %

Table 2:- Characterization data of S-hepta-O-benzoyl lactosyl-1-aryldithiocarbamate

Reactants: - 1) Hepta-O-benzoyl lactosyl bromide (1) [0.01M]. 2) Ammonium aryldithiocarbamate (2

)	nocarbamate	2(2a-g) [0. 01M].
Sr.	Product		m. p.		Analysis
No.		(%)	(°C)	()()	Found(R

Sr. No.	Product	Yield (%)	m. p.	55 St. J.	Analysis Found(Red	(%): quired)
•		(10)	("C)	(c in CHCl3)	N	s
Le	3a	70	124	-182.28" (c,a.980)	1 (1.1)	5.84 (5.24)
2.	3Ъ	64	118	-188° (c, 0.693)	(L.I)	5.0 (5.9)
3.	3c	76	98	-190 " (c, 0.986)	1 (1.1)	5.0 (5.9)
4.	3d	71	137	-202° (c, 0.786)	l (1.1)	5.0 (5.9)
5.	3e	67	150	-218" (c, 0.966)	1,1 (1,13)	5.1 (5.0)
6.	3f	62	176	-136° (c, 1.006)	1.1 (1.13)	5.1 (5.0)
7.	3g	72	120	-169° (c, 1.040)	1.1 (1.13)	5.1 (5.0)

ACKNOWLEDGEMENT

Authors are thankful to Principal and Head of Department of Chemistry, Shri, D.M. Burungale Science and Arts College, Shegaon, Dist-Buldhana,

References

1. Quing-Li Wei, Shu-Sheng Zhang, Jun Gao, Wei-hua Li, Liang-Zhang Xu and Zhi-Gang Yu.

Bioorg. Med. Chem., (2006) 14, 7146.

- 2. K. Taujiihara, M. Ozeki, T. Morikawa, M. Kawamori, Akarke and Y. Arai, J. Med. Chem., (1982) 25, 441.
- 3. Haung Shu-Ting, Hsei I-Jen and Chen-Chinpiao. Bioorg. Med. Chem., (2006) 14, 6106.
- 4. P.C.Tome Joao, G. Neves Maria, A. Tome, A. S. Gavaleiro Jose, F. Mendonka Ana, I. N. Pegado, R. Duarte and M. L. Valdeira, Bioorg. Med. Chem., (2005),14, 3878.
- 5. S. Hout, N. Azas, A. Darque, M. Robin, C. Di. Giorgio, M. Gasquet, J. Galy and Timon-Savid, P. Parasitology, (2004) 129, 525.

Sudies Of Interaction Of Lightwith Different Concentration Of Ligards In Various Media By Refractrometry.

G.D.Tambatkar, Y.P.Wayal

Department Of Chemistry, Sar. D.M. Formingale Science & Arts College. Shegaon - 444 203 Dist: Buldham (Maharashtra) India

ABSTRACT

to additive properties such as Refractive index. Molar polaricality and molar selfactivation of some hoserneyels; drugs such as Chlorothalided, -2-chloro Solido Decay 5. excell2-difference adol-1-ylt-benishig all mammite. Doxycycline god odmentyl av so-LAZASSA S.11 (2a) occubydro. 3.6.30.12.12a. Politalydroxyl I. Flathoni. mighthscence-2carbotrational have been studied in DMSO DMF and Title mode at 27-0 PC temperature ted concentration

The values of holar refreezing/R, and make polarizability (ii) are tools to be decreased with decreasing the concentration of solute.

Key wards. Additive property. Dr. cycycline

INTRODUCTION-

Refrective index is one of the important additives projection of liquid. When a ray of light passes from one medium to another, it -: Was in refrection, that is a change of direction If it passes from less censulte more dense mediant, it is reflected inwards the normal to form angle of refraction (i), which is less them angle mendence (i). The act active soles is the ratio of the ke-setty of light in vectors to first in the medium and if depends upon the temperature and wave length of light. The properties of high distortion as refractive tracks, strength and ultrastinic velocity of binary in stores are studied by many workers. (Mahijan bassidled mother restrictions and polarizatedisty consumpt of 2-amino 5-25-200 benzione sulphome sold in different percentage of disorate scales transfers the ghatel and Agrawal stacked the refractive inclines in mixed solvents. Ososaki si has a smilled dielector, constants and refractive indices of binary mixtures large has studies me at reference and polarisability constant of pyracoles and issuegables in different percentage of discourse water numbers. Mosbra met at his studied the make saturation and polytical bity constant of Aliffly Cettles and Fellitt curricious with some substituted is examines, pyrazelle and pyrizolimers hadronelinal s

However study of motor refractivity and motor polar scaling constant of novel compounds such as Chlorothelician-Patrion - 5.(1 by drusy-5-csu-1,2-ddy drussaiddol-1-ylibenzere validational and Eduquinal 45.7 distinhalist application of a quadratic value and eduquinal 45.7 distinhalist application of a quadratic value of the consequence of the consequ THE DMF and DMSO under identical set of experimental case, their which could enter man field aspect of solute-solvent interaction is scanty.

NCMR21 Peer Reviewed Book Chapter

March. 2021

ISBN: 572-81-95551-4-9

Olderothalican Deceptine Transfer (in present work is undertaken to make the systematic study of allowe oursel compounds retractionic trically at 27°C temperature EXECUMENTAL

Along tool compose a greenwordy used as drops in pharmaceutical. Treve compounds provide the pharmaceutical material with good storage stebulity even at legh temperature and high lumidity. The programmes are synthesized by sometand method and pointy is elected by M.P. TLC TR. am. MMR en-

The value of the commands are prepared in different solvents (TEF DMF DMF DATE) by disselving in appropriate amount by weight. All the weighing are made on Machanki Zaciady Precycying. Gold ski balance made in Poland (40.001gm). The accuracy of do sity reconnent us is within 0 IKg/in."

The refractive index of subject and anilitions are measure at different or neentrations by Africa refractameter forming accuracy with list (Holin). The temperature of pusin box maintained constant by care, along water form thempostal, at 27± 3 f°C Refrectionners is chially calibrated with plass piece (i =1.5229) provided with the in anyment The malar refraction of solvent and solution mixtures are determined from

$$Rm = \begin{bmatrix} c^2 + 1 \\ c \end{bmatrix} \cdot \frac{M}{c}$$

 $Rm_{clumer} = X_1Rm_1 + X_2Rm_2$

No -- Avogadro's is other, at + polar subtley constant

RmI & Rm2 * mo acrefracts to of selvent and solute and

XI & X2-+ male traction of solventured solution solution

The midar refresher represents terms of this volume of the substances my scales in male The morar refraction of solute can be calculated as:

Rm (solute) - R (mixture)-R (+c) year)

The retractive index of solvent and volution at different concentration are measured from Abbe's refractometer and the values of molar refraction and polaribility constants are eval, ared and presented in tables 1 to 4 for different systems.

March, 2021

ISBN: 978-81-95551-4-9

Table

later refraction and pularizibil	icy constant for Ligaro	d LtChlaroth	alidon) in DMF
Mer Title	Res	X	101-23

Molart y	R.L.	100	10-23
(81)		(cur's male 1)	cm3
cci	1,417	0.06509	C 002582
0.005	1.416	0.052493	0.001288
0.0025	114/4	0.016390	0.0006504
E 00125	1.4125	0.00820	D 0003252
c 000625	1.413	0.00408	0.0001618

Molar refraction and polarizibility constant for Ligand I/Chlorothalidon (in THF

Molarity (M)	R1	Rm. (cm3 male-1)	s 10-23 cm3
0.01	1.418	0.1659	0.004241
0.005	1.414	0.0539	0.002138
0.0025	1.413	0.0270	0.001071
0.00125	1.412	0.0135	0.4:00534
0.000525	1.411	0.00682	0.000270

Molar refraction and polarizibility constant for Ligand 1(Chlorothalidan) in DMSO

Molarity (M)	RI	Emily time and the file	x 10-23
0.01	1.415	0.05800	0.002693
0.005	1.413	0.93427	0301359
0.3025	1,4135	0.01718	0.000687
0.00125	1412	0.00861	0.000341
0.000625	1.411	0.00431	0.305171

Molar refraction and polarizibility constant for Ligand2(. Dosseycline) in DMF

Molanty (M)	R.I.	Rm tem3 me e-1;	3 (0-23 cm)
0.01	1.515	0.06261	0.002484
0.005	1.414	0.03140	0.001245
0.0025	1.4135	0.01571	0.000027
0.00125	1.413	0.00820	0.000327
0.000625	1.412	0.00415	c and 164

Molar retraction and polarizibility constant for Ligand 2(1)0xy (schine) in THF

Mularity (M)	R.I	Rin fem mole J	, x10 ⁻² rm ³
0.01	1.468	6.98094	0.003118
0.005	1.467	0.04058	0.001563
0.9025	1.467	6.02003	0.0007827
0.00125	1.466	0.01018	0.0003940
03/60625	1.464	0.005201	0.00806570

NCMH21-Peer-Reviewed Book Chapter

March. 2021

ISBN: 978-21-95551-4-9

Molar refraction and polarizability constant for Ligand 2(Doxycycline) in DMSO

Molarity (M)	KT -	Rin (cm3 ma c-1)	x 10.23 cm3
0,01	1.410	0.08272	a 003321
0.005	1411	(1)4224	0000-675
0.0025	1.413	(3212)	0.0008423
0.00125	1411	0.01063	0.0004225
0.000625	1.599	0.00545	0.000216

Result and discussion:

I could be see from above tables (1 to 4) thatmolar refractivity and polarizability constants decrease with decreasing the entire infration of solution. It is take observed that the values of Rin and a are found to be given in prior solvents. This and DMF, Polar solvents involve II-bonding, may from complex with solvine and non-polar sulvent case not involve H bonding and does not associate with solute. Thus may also be attribute to the fact that the disole in the compound lies perpendicule to the larger axis of the molecules considerable divide association finter my centar attractions, raises place which would be accompanied by increase in polarizability constants to as well as motal retractions (Rm) with increasing the concentration because of my not compensation of the dipoles

ACKNOWLEDGEMENT: Authors are thankful to the mine pall of D M Burningale College, Shegaphfor providing recessivy facilities.

REFERENCES:

Raikar S.K., Amirabbayi — Ind. J. Tech., 31, 581 (1993) T.M., Harogroppad S.B.

And Balundgi, R.H.

Ind J. Chem. 30: 711 (1991). And Jauhar S.P. Kapila V.F., Gupta C.M. Anim J. Chem., 12(3), 659 (2000); And Sangal P. Verma R.F. Kumar V

Mahring D.T. Ph.D. Thesis at Chemistry submitted to

Amrayati University, Amrayati (1997)

: Grantal J. Chem., 16(3), (2000). P.B and Kedar Burghate A.S. Agrawal

RM

Agrawal P.B., Burghate : Oriental J. Chem., 17(1), 147(2001) A.S., Idrees M.

and Narwade M.L.

Oswal S.L. and Int. J. Chem., 26, 23 (1987) Rathmani M.V.

1 Ph D. Thesis in Chemistry submitted to Bibe S.A. Arstavati University, Amrayati (2004).

UP., : J. Chem. Pharm. Res 3(3) (2011) 77-82. Mostram

B.G. Khobragade

Narwhile M.L. and Yasa'


AR

Website - www.audiorvocalic.viv Entail + and harsomal@ymad.com

Exploration of Escherichia coli in Drinking water of Purna river basin

Dr. Yamini Sadashivrao Patil

Shn Dnyaneshwar Inaskun Burungale
Science & Art's College, Shopson
Acc.No. _____6\S\S
Class No. _____5\76
Rs. _____2\S\S
Date of Entry ___3\L\3\2000

Exploration of
Escherichia coli in
Drinking water of
Purna river basin

- AUTHOR Dr. Yamini Sadashivrao Patil M.Sc., Ph.D Head Department of Microbiology Shri. Dnyaneshwar Maskuji Burungale

Science and Art's College, Shegaon, Dist. Buldana 444 203

Copyright @ DnyanPath Publication, Amravati (INDIA)

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopy, recording, or otherwise or stored in a database or retrieval system without the prior written permission of publishers. This edition can be exported from India only by the Publishers.

Exploration of Escherichia coli in Drinking water of Purna river basin

Published by the DnyanPath Publication (INDIA)

The edition published in 1 May, 2021

ISBN 13:978-93-91331-12-2

DnyanPath

ISO 9001 : 2015

Reg. Office: FFS-A, Block C, First Floor, Venus Plaza, Shegaon Naka,

V.M.V. Road, Amravati - 444 603 (Maharashtra)

Our Distribution: Maharashtra, Delhi, Gujrat, Chattisgarh, Telangana, Bihar.

Visit us : www.dnyanpath.org

Contact us : dnyanpathpub@gmail.com

Phone : 08600353712, 09503237806

Printed at Shri Gurudeo Printers, Amravati.

Mahatma Fule Sankul, Shegaon Naka,

V.M.V. Road, Amravati - 444603 (Maharashtra)

Price : ₹ 250/-

Preface

The present book on Exploration of Escherichia coli in Drinking water of Purna River basin is based on the drinking water qual ity in the saline tract. This study was held in the salinity affected area of the Buldana District of Maharashtra. The water and soil quality becomes salty due to Purna River saline water. Saline water of this river is highly salty and beyond the potable limit and water is highly polluted with huge amount of microbial population, one of the well-known microorganism responsible for water pollution is Escherichia coliso the present study was held to explore E. coli from this Purna river saline tract drinking water sources.

This book is distributed in five different chapters. First chapteris regarding Introduction about origin of purna River and its existence in different region and *E.coli* pollution in this water, *E.coli* isolated from different region. Second chapter is based on the previous study held in this saline tract to explore *E.coli*. Third chapter consisting of the material and methods used to isolate and identify *E.coli*. The text matter related to experiments in microbiology has adequately supplemented with illustrations. Fourth chapter is based on results by table and graphs for easy understanding. I hope this book will be helpful in time management in practical work, this chapter further extended with discussion and comparison with previous work.

Text book contents of this is presented in a comprehensive way using simple language instead of question and answer form, so that the student should master the concept and then apply it.

The possible care has been taken to present the matter in its pristine form. Nevertheless, human and typological errors are likely to creep in roguishly. Sudents and teachers are always welcome for their suggestions.

I want to acknowledge with deep thanks of gratitude to Respected Dr. D.H. Tambekar for his constant support and guidance and also have to extend my thankfulness towards Assistant Professor Mr. R.B.Barabde my husband and my son for their help in publishing journey of this book.

We gratefully and affectionately recognize technical assistance and help of DnyanPath Publications Amravati branch for bringing out the book timely in a nice attire mode.

-CONTENT-

Assembly to a second of the control of the control

1.	Introduction	1 - 26
2.	Review of Literature	27 - 43
3.	Materials and Methods	44 - 58
	Results	59 - 136
ا ان الر	Discussion	137 - 150
	and Recommendations	151 - 152
). all	Bibliography	153 - 171
1.	Bibliography ****	

CHAPTER-1

a vote of the feature of the feature

Introduction

India is an agricultural country and 12 million hectors of agricultural land is under salinity. According to the geological survey of India it was reported that the saline belt of Purna was the part of Payanghat ground towards north Melghat mountain row and south Ajanta Mountain. Beside the valley there were Satpuda mountain ranges, on these mountain ranges there was an explosion of volcano and spread with alluvial of Purna and formed saline belt. The Purna river basin lies between latitude 20°40' to 21°45' and its longitude 76°20' to 77°45' (Adyalkar, 1975)(Fig.1). The river Purna originates from the Satpuda ranges in Baitul district of M.P. and then passes through the Maharashtra, through Amravati, Akola, Buldana district and meets river Tapi in Jalgaon district. This Purna valley basin extends east west for a stretch of 170 km. The total area covered is 6200 Sq. km. Out of which 3000 Sq. km is characterized by saline water or brackish water.

The catchments area of Purna river basin (PRB) is 17650 sq. km. out of which 7500 sq. km. is of alluvial deposits in which 4682 sq. km. is characterized by underground saline water (brackish water). The population in PRB is 3.92 million. Out of which approximately 350 villages (population 0.35 million), are severely affected and need solution to solve the drinking water problem. Maximum salinity of 19,000 microhms/cm is present in PRB.

TEHSIL BOUNDRY

professional contraction of the second of th

Grant State of the Contract of

o defende tiple. I still till se aparel i prof. i v affera et e mi

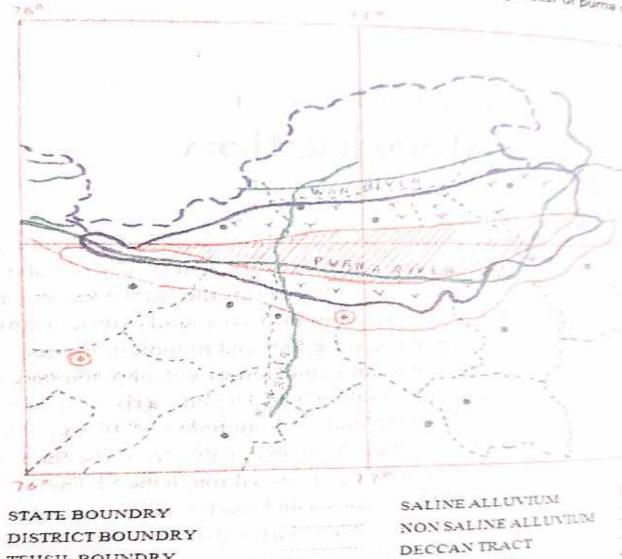
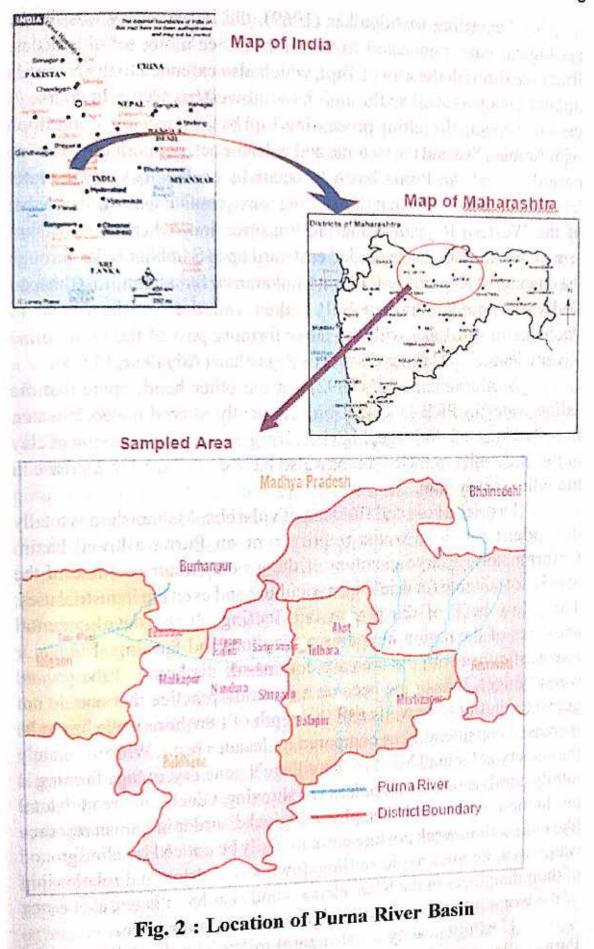



Fig. 1: Map of Purna River Basin

HEAD QUARTER

The course being the service of the design of the course o the second with a substitution and a second superior participants such as such as a substitution of the second

BORELL CHARGE SERVICE STREET, THE RESIDENCE OF THE PROPERTY OF

Exploration of Escherichia Coli in Drinking water of puma river basis According to Adyalkar (1969), the Purna valley was, in the geological past, connected to the Arabian Sea along set of evacuate fractures through the arm of Tapi, which also extended to the Narmada upland valley as well as through its southwestern sector. In course of geologic epoch, the silting processing Tapi basin severed its connection with Arabian Sea and the tectonic and volcanic activity during the Eocene period caused the Purna basin to occur like a landlocked salt-water lake. He hold the view that this marine transgression was similar to that of the Western Rajasthan marine transgression, where the northern arm of the Arabian Sea extended eastward up to Sambhar Lake, through the channel of Kaparda Salt Playa, Lunkaransar Sujangarh, Tal Chhapar Didwana and Kuchaman Salt Lakes and the Southern arm to Pachbhadra salt Lake with the latter forming past of the Loni Saline River Channel in Barmer district of Rajasthan (Adyalkar, 1971).

Muthuraman et al (1992), on the other hand, opine that the saline water in PRB is in fact biogenetically altered meteoric water Impeded internal drainage, high specific gravity and dispersion of clay in the B.C. soils in the basin may also have contributed to increase in the salinity over time.

District Akola and Buldana of vidarbha, Maharashtra is totally dependent for their water requirement on Purna alluvial basin. Unfortunately, a large quantum of the ground water resource of the area is not suitable for drinking, agriculture and even the industrial uses. This draw back of the region is affecting all the developmental activities of the region including agriculture and farming. The major issues of concern to the area are continuous depletion of the ground water budget. It has now become a common practice that one do not get water in old bore wells and the depth of new bore wells has to be increased considerably as compared to decades back. What ultimately the society is facing? Most of the village's gone dry, orange farming is totally paralyzed. Cotton, pulses are showing a declining trend in total production. Apart from this, physiological disorder in human resource like indigestion, weak posture etc. can easily be noticed in saline ground water area. Peoples avoid settling down any matrimonial relationship of their daughters in the Khartalegaon and near by villages, as it is one of the worst hit areas. The overall activity has gone down.

The Purna valley is a structural valley. The alluvial deposits of Purna valley occur along the extensive of a fault block. The basement of the valley has a slope towards north. The alluvial deposits attain

Name :- Dr. Yamini Sadashivrao Patil

Qualification :- M.Sc, Ph.D

Teaching Experience :- 21 Years

HOD, Department of Microbiology

Shri. Dnyaneshwar Maskuji Burungale Science and Art's college

Shegaon Dist - Buldana 444203

Contact No - 9422181972, 9022308069

Email Id - yrbshegaon11@gmail.com

ISO 9001 : 2015

International Conference on Advances in Physical, Chemical & Mathematical Sciences

13-16 February 2020

ORGANIZED BY

Department of Physics, Chemistry, Mathematics, Statistics, Computer Science & Laxminarayan Institute of Technology Rashtrasant Tukadoji Maharaj Nagpur University

www.icapcm2020.com

SOUVENIR

OP-7

11

An Overview of Techniques used for Information **Extraction from Scientific Documents**

V. V. Agarkar1*, P. E. Ajmire2, P. S. Bodkhe3 Assistant Professor, Department of Computer Science, Shri. D. M. Burungale Science & Arts College, Shegaon, (M.S.), India, vinodvagarkar@gmail.com ²Associate Professor & Head, Department of Computer Science, G. S. Science Arts & Commerce College, Khamgaon, (M.S.), India, peajmire@rediffmail.com ³Assistant Professor, Department of Computer Science, G. S. Science Arts & Commerce College, Khamgaon, (M.S.), India, psbodkhe@gmail.com

Abstract:

Scientific documents are an important source of information for researchers to carry out qualitative research [1]. These are generally available in semi-structured format like PDF. To understand and analyze scientific documents; readers are interested in particular sections of that documents. Extracting text from these sections is a vital phase of information extraction because research papers do not have a common format i.e. usually every conference or journal has its own format for writing research papers [2]. This paper presents overview of techniques used for information extraction from scientific documents.

Early work in information extraction from research papers is based on machine learning techniques like Hidden Markov models (HMM) with 92.9% accuracy [4], Support Vector Machine (SVM) with 92.9% accuracy [5] and Conditional Random Field (CRF) with 98.3% accuracy [6]. Subsequently other techniques like rule-based metadata extraction system with 90.6% accuracy [8], hybrid approach [2], and rhetorical classifier with 0.51F accuracy [10] are used to extract information. Different information extraction techniques are studied and their comparison based on approaches used, data set used, type of information extracted, and the result of overall accuracy is summarised in a table.

Various researchers extracted metadata information like title, authors, emails, abstract, keywords, and references etc from research papers/ scientific documents with high accuracy. Extraction approaches are based on traditional machine learning techniques, rule based algorithm and some newly applied techniques. Also numbers of automatic information extraction frameworks or tools are very handy to extracts information from scientific documents in PDF format.

Keywords- Information extraction, PDF, NLP, metadata

References:

- 1. S. R. Patil and Mahajan S. M., "Optimized summarization of research papers as an aid for research scholars using data mining techniques", International Conference on Radar, Communication and Computing (ICRCC), IEEE, pp 243 - 249, December 2012,
- 2. Ozair Saleem and Seemab Latif, "Information Extraction from Research Papers by Data Integration and Data Validation from Multiple Header Extraction Sources", Proceedings of the World Congress on Engineering and Computer Science (WCECS) 2012, Vol I, October 2012,
- 3. Y. Sibaroni, D. H. Widyantoro and M. L. Khodra, "Information extraction of extend relation in scientific papers", 2016 International Conference on Data and Software Engineering (ICoDSE), Denpasar, 2016, pp. 1-6.
- Wai Chong Chia, Phocy Lee Teh, Colin Mathew Hew D Gill, "Text Extraction and Categorization from Watermark Scientific Document in Bulk", 3rd International Conference on Computational Intelligence and Applications, IEEE, 2018
- 5. R. Upadhyay and A. Fujii, "Semantic Knowledge Extraction from Research Documents", Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, vol. 8, pp. 439-445, IEEE, 2016.
- Tkaczyk, D., Szostek, P., Dendek, P. J., Fedoryszak, M., &Bolikowski, L"CERMINE automatic extraction of metadata and references from scientific literature", In Document Analysis Systems (DAS), 2014 11th IAPR International Workshop on (pp. 217-221). IEEE (2014).

121

Academic Year 2019-20

COMPUTER SCIENCE

.Net Technology and Java Programming

Computer Science / Computer Application/ Information Technology

B.Sc. PART- III (SEMESTER- V)

Authors

- Dr. V.S. Tondre
- V.V. Agarkar
- P.S. Mankar

Editors

- Dr. V.M. Patil
- . P.S. Bodkhe

Department of Computer Science Shri Dnyaneshwar Maskuji Burungale Science & Arts College, Shegaon

SANT GADGE BABA AMRAVATI UNIVERSITY COMPUTER SCIENCE TEACHERS' ASSOCIATION (SGBAUCSTA)

COMPUTER SCIENCE

.Net Technology and Java Programming

B.Sc. PART- III (SEMESTER- V)

DESU & MASSON Department of Computer Science | den Dayaneshwar Maskupi Burungsie Science & Att Conege, Shecann

Copyright © 2019, By DnyanPath Publication, Amravati (Maharashtra)

No part of this publication may be reproduce or distributed in any form or by any means, electronic, mechanical, photocopy, recording, or otherwise or stored in a database or retrieval system without the prior written permission of publishers. This edition can be exported from India only by the Publishers.

Published by the DnyanPath Publication (INDIA)

A TEXT BOOK OF COMPUTER SCIENCE SEMESTER - V

ISBN 13 978-93-87278-49-3 Edition First, July 2019

Mahatma Fule Sankul, Infront of Abhiyanta Bhavan,

Shegaon Naka, V.M.V. Road, Amravati - 444603 (Maharashtra)

Visit us : www.dnyanpath.org

Contact us: info@dnyanpath.org | dnyanpathpub@gmail.com

Phone: 08600353712, 09503237806

Printed at Shri Gurudeo Printers, Amravati.

Mahatma Fule Sankul, Shegaon Naka, V.M.V. Road, Amravati - 444603 (Maharashtra)

Price : ₹ 120 /-

COMPUTER SCIENCE

.Net Technology and Java Programming

B.Sc. PART- III (SEMESTER- V)

- AUTHORS -

Dr. V.S. Tondre

Head & Assistant Professor

Department of Computer Science

Brijlal Biyani Science College

Amrayati.

V.V. Agarkar

Head & Assistant Professor
Department of Computer Science
Shri. Dnyaneshwar Maskuji Burungale Science
& Arts College, Shegaon

P.S. Mankar

Assistant Professor

Department of Computer Science
Shri. Shivaji Science College

Amravati.

- EDITORS -

Dr. V.M. Patil

Head & Associate Professor
Department of Computer Science
Shri. Shivaji Science College
Akola.

P. S. Bodkhe

Associate Professor
Department of Computer Science
G.S. Arts Commerce & Science College
Khamgaon.

SANT GADGE BABA AMRAVATI UNIVERSITY COMPUTER SCIENCE TEACHERS' ASSOCIATION (SGBAUCSTA)

Sant Gadge Baba Amravati University Computer Science Teachers' Association (SGBAUCSTA) was established in the year 2015 to promote cooperation amongst Computer Science teacher community for betterment of students learning Computer Science at various levels.

Association publishes a News Letter, organizes student's activities like intercollegiate seminar competitions, chemi quiz, aptitude tests, national/international conference and other academic activities, also extends its collaboration and sponsorships for the organization of such events. Association is also contributing time to time in the revision university curriculum of subject Computer Science of under graduate and post graduate classes. In order to have uniformity in the teaching throughout the university, association is publishing books of Computer Science for all undergraduate classes. These book are written by the experienced teachers of various colleges as per revised syllabi of semester pattern of Sant Gadge Baba Amravati University, Amravati.

Hope this book will be also useful to our students to grasp the essence of the subject. The suggestions for improvement of this project are highly solicited.

- Executive Council -

President : Dr. H. M. Deshmukh , Amravati

Vice President : Dr. P. N. Mulkalwar, Yavatmal

Secretary : S. G. Choudhari, Badnera

Joint Secretary : Dr. H. S. Mahalle, Pusad

Treasurer : N. M. Jathe, Amravati

Members : L. R. Muley, Paratwada

Dr. P. E. Ajmere, Khamgaon

Dr. S. R. Kalmegh, Amravati

Preface

Sant Gadge Baba Amravati University Computer Science Teachers' Association is proud to present a text book for computer Science for the students of the fifth semester of B.Sc. This book has been designed after considering the syllabus of Sant Gadge Baba Amravati University.

The contents of the book are divided into six units. First Three units are based on .Net Technology while the next three units cover the aspects of Java Programming. The concepts are illustrated with the help of neat and well labeled diagrams and supported with easy to understand examples. The terminologies are explained with the help of precisely designed algorithms.

The authors have referred many standard books while preparing the contents of this book and we acknowledge our sincere gratitude towards those authors. The authors have also used simple and easy to understand language.

We have taken utmost care to avoid the any kind of typographical mistake in the contents of the book. Mistakes that are overlooked during editing may please be reported so as to remove them in the subsequent edition.

We would like to thank the managing committee of SGBAUCSTA who have given this opportunity. We would also like to thank DnyanPath Publication Amravati for publishing this book. Our special thanks to Dr. V.M. Patil and P.S. Bodkhe for sparing their valuable time to edit this book.

We are sure that this book would certainly benefit the students for enhancing their knowledge of the subject and would also help the teachers in their regular teaching.

Comments and suggestions for further improvements are always welcome.

Authors

Amravati July, 2019

-SYLLABUS-

COMPUTER SCIENCE

Computer Application/Information Technology to be implemented from the Academic Session 2019-20 and onwards

Unit I:

Introduction to .NET Framework: NET framework, MSIL, CLR, CLS, CTS, Namespaces, Assemblies The Common Language Implementation, Assemblies, Garbage Collection, The End to DLL Hell - Managed Execution

Unit II:

Introduction to visual programming: Concept of event driven programming - Introduction to VB.Net environment, The .NET Framework and the Common Language Runtime. Building VB.NET Applications, The Visual Basic Integrated Development - Basic Language - Console application and windows application, Data types, Declaring Variables, scope of variables, operators and statements.

Unit III:

Decisions and loop: Making Decisions with If . . . Else Statements, Using Select Case, Making Selections with Switch and Choose, Loop statements - Do Loop, for, while - The With Statement - Handling Dates and Times - Converting between Data Types - Arrays - declaration and manipulation - Strings & string functions - Sub Procedures and Functions.

Unit IV:

Introduction to JAVA: History and evolution, Feature, JDK, JVM, Difference between C++ and Java, Structure of Java Program, Keywords, Variable, Data types and Literals, Operators Control of Flow, (Selection Statements, Iteration Statements), Command Line Argument, One dimensional and two dimensional array.

Unit V:

Classes and inheritance: Class, Object, Method, Overloading Method, Constructor, Constructor Overloading, this Keyword Inheritance: Introduction to Inheritance, Super, Multilene Hierarchy, method overriding, Abstract class, Using Final (variable methods and classes).

Unit VI:

String, Package and Interface: String: String operation, String comparison, Searching and modifying string,

Package: Package concept, Defining Package, Finding Package
Java In-built Packages

Interface: Interface concept, Defining, and Implementing of Interface.

-INDEX-

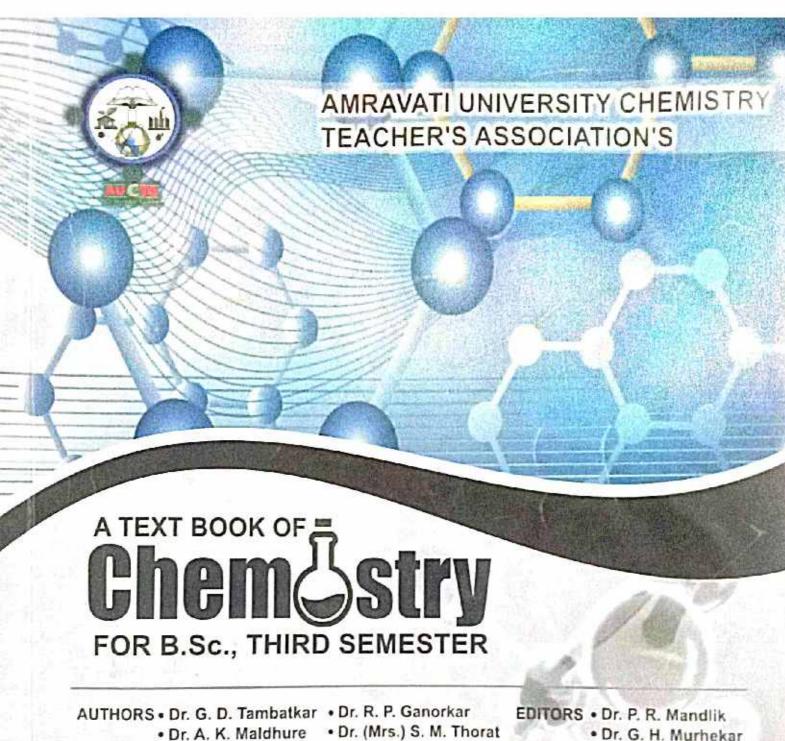
1.	Intr	oduction to .Net Frameworks	
	1.1	.Net Framework	
	1.2	Microsoft Intermediate Language (MSIL)	9
	1.3	Common Language Runtime (CLR)	9
	1.4	Common Language Specification (CLS)	8
	1.5	Common Type System (CTS)	
	1.6	Portable Executable (PE) File Format	
	1.7	Just In Time Compiler - JIT	3
	1.8	Namespaces	9
	1.9	Assemblies	10
	1.10		14
	1.11		15
		Managed Execution	16
	•	Exercise	17
2.	Intro	oduction to Visual Programming	00
٠.	2.1	Introduction to visual programming	20
	2.2	Introduction to VB.Net environment	21
	2.3	Net Framework and the Common language runtime	23
	2.4	Building VB Net Application	24
	2.5	Console Application And Window Application	26
	2.6	Data Types	31
	2.7	Variables	32
9	2.8	Operators And Statement	36
	•	Exercise	48
3.	Deci	sions and Loop	
٥.	3.1	Decision making Statements	49
	3.2	Loop Statements	54
	3.3	The With Statement	57
- 30	3.4	Handling Dates and Times	58
	3.5	Converting between Data Types	59
	3.6	Arrays	60
	3.7	Strings and string functions	
- 67	3.8	Sub Procedures	63
	3.9	Functions	65
		Exercise	67
	99	(•)	68

4	Tova	Programming Fundamentals	7
4.	4.1	Introduction to JAVA	71
		Jova Environment	71
		Toro Virtual Machines (JVM)	75
	11	Difference between C++ and Java	77 79
	4.5	Structure of Java Program	79
		Java Tokens	81
	4.7	Java Character Set	81
	4.8	Keywords	82
	4.9	Identifiers	82
	4.10	Variable	83
	4.11	Data types	85
	4.12		87
	4.13	Operators	88
	4.14	Control of Flow	93
		Command Line Argument	101
	4.16	Агтауѕ	102
	•	Exercise	106
5	. Clas	sses, Methods and Inheritance	
	5.1	Class	108
	5.2	Declaring Objects	109
	5.3	Constructors	116
	5.4	Introduction to Inheritance	123
	5.5	Member Access and Inheritance	124
	5.6	Super Keyword Used To Call Superclass Constructor	125
	5.7		133
	5.8	Abstract Classes	137
	•	Exercise	141
	6. Stri	ings, Packages and Interfaces	
	6.1	String	143
	6.2	The String Constructor	143
	6.3	Special String Operations	144
	6.4	Package	154
	6.5	Understanding CLASSPATH	158
	6.6	Interface	162
		Everoise	167

CHAPTER-I

Introduction to .Net Framework

1.1 .Net Framework:


The .Net framework is a innovatory platform which helps you to write the following types of applications:

- Windows applications
- Web applications
- Web services

The .Net framework supports multi-platform applications. This framework has been designed in such a way that it can be used from any of the following languages such as Visual Basic, C#, C++, Jscript, and COBOL, etc. The .Net framework consists of anmassive library of codes used by the client languages like VB.Net. These languages use object-oriented methodology. .NET is a Software Platform. It is a language-neutral environment for developing rich .NET experiences and building applications that can easily and securely operate within it. The components that make up the .NET platform are collectively called the .NET Framework. The .NET Framework is a managed, type-safe environment for developing and executing applications. The .NET Framework manages all aspects of program execution like allocation of memory for the storage of data and instructions, granting and denying permissions to the application, managing execution of the application and reallocation of memory for resources that are not needed.

The .NET Framework is designed for cross-language compatibility. Cross-language compatibility means, an application written in Visual Basic .NET may reference a DLL file written in C#. A Visual Basic .NET class might be derived from a C# class or vice versa.

Academic Year 2017-18

· Dr. P. P. Deohate

· Mr. A. B. Sahare

· Dr. R. M. Jumle

SPECIMENT COPY

(As per Sant Gadge Baba Amravati University's new syllabus)

Chem Stry

FOR B.Sc., THIRD SEMESTER

- AUTHORS -

Dr. G. D. Tambatkar

Department of Chemistry Shri D. M. Burunale Science and Art College, Shegaon.

Dr. A. K. Maldhure

Department of Chemistry Art, Commerce and Science College, Kiran Nagar, Amravati.

Dr. Pradip P. Deohate

Department of Chemistry Shri R. L. T. College of Science, Akola.

Dr. R. P. Ganorkar

Department of Chemistry Mahatma Fule Mahavidyalaya, Warud

Dr. Mrs. S. M. Thorat

Department of Chemistry Shri Shivaji College of Arts, Commerce and Science, Akola.

Mr. A. B. Sahare

Department of Chemistry Shri Shivaji College of Arts, Commerce and Science, Akola.

- EDITORS

Dr. P. R. Mandlik

Associate Professor Department of Chemistry Shri Shivaji Science College, Amravati.

Dr. G. H. Murhekar

Assistant Professor
Department of Chemistry
Govt. Vidarbha Institute of Science &
Humanities, Amravati

Dr. R. M. Jumle

Associate Professor Department of Chemistry Shri Shivaji Arts, Commerce & Science College, Akot.

Published by **DnyanPath Publication**

Mahatma Fule Sankul, Infront of Abhiyanta Bhavan, Shegaon Naka, V.M.V. Road, Amravati - 444603 (Maharashtra)

Visit: www.dnyanpath.com

Contact us: info@dnyanpath.com, dnyanpathpub@gmail.com

Mob.: 08600353712, 09503237806

A TEXT BOOK OF CHEMISTRY SEMESTER - III

ISBN 13 : 978-81-933884-1-9 Edition : First, June 2017

Second, June 2018

Copyright © 2017, By DnyanPath Publication, Amravati (Maharashtra)

No part of this publication may be reproduce or distributed in any form or by any means, electronic, mechanical, photocopy, recording, or otherwise or stored in a database or retrieval system without the prior written permission of publishers. This edition can be exported from India only by the Publishers.

Printed at Shri Gurudeo Printers, Amravati.

Mahatma Fule Sankul, Shegaon Naka, V.M.V. Road, Amravati - 444603 (Maharashtra)

Price : ₹ 140/-

Preface

Preface

Amravati University Chemistry Teachers' Association presenting 'A Text Book of Chemistry' for the students of third semester of B.Sc. This book has been written strictly according to the new syllabus of Sant Gadge Baba Amravati University, Amravati. While writing this book, care has been taken to see that the language is simple so that students will not find any difficulty in understanding the subject. The book incorporates in all six units, first two of Inorganic Chemistry, next two of Organic Chemistry and last two units of Physical Chemistry. The theoretical part is supplemented with number of figures. Numerical have also been included in physical chemistry units which will be definitely useful to our students. At the end of each chapter some questions have been given which will assist the students to assess their knowledge of the topic prepared by them as well as help them for the preparation of examination.

While preparing the book utmost care has been taken to see that there are no typographical mistakes/errors of contents. However if any such mistakes /errors have crept in may kindly be communicated for rectification edition of the book.

We have referred many well known text books while preparing the matter of this book and we sincerely acknowledge our indebtedness to those authors. We would also like to thank the managing committee of AUCTA who have given us the opportunity to undertake thissuperficially easy looking but a difficult task- which has ultimately benefitted us. Our sincere thanks to managing committee for consistent moral support and DnyanPath Publication (INDIA) for publishing the book. Our special thanks to the Dr. P. R. Mandlik (Secretary, AUCTA), Dr. G.H. Murhekar and Dr. R.M. Jumle for editing the book by spending their valuable time.

We hope that the student community and our teacher fraternity will warmly accept this book. Any critical comments and suggestions will be warmly welcome.

Authors

Amravati University Chemistry Teacher's Association

5C, Jijau Nagar, Camp, Amravati – 444 603 Ph. No. (R) 0721- 2663070, Cell 09403866611 Email - aucta2002@gmail.com

Amravati University Chemistry Teachers' Association was established in the year 1995 to promote cooperation amongst chemistry teacher community for betterment of students

learning chemistry at various levels.

Association publishes a News Letter, organizes student's activities like intercollegiate seminar competitions, chemi quiz, aptitude tests, national/international conference and other academic activities, also extends its collaboration and sponsorships for the organization of such events. Association is also contributing time to time in the revision university curriculum of subject chemistry of under and post graduate classes. In order to have uniformity in the teaching throughout the university, association is publishing books of chemistry for all undergraduate classes. This book is written by the experienced teachers of various colleges as per revised syllabi of semester pattern of Sant Gadge Baba Amravati University, Amravati.

Hope this book will be useful to our students to grasp the essence of the subject. The

suggestions for improvement of this project are highly solicited.

MANAGING COMMITTEE

: Dr. V. G. Thakare, Amravati President

: Dr. S. P. Deshmukh, Akola Vice President

Dr. S. R. Warhate, Wani

: Dr. P. R. Mandlik, Amravati Secretary

: Dr. Ms. S. S. Asole, Wani Joint Secretary

: Mr. A. U. Ganar, Yeotmal Treasurer

: Dr. S. P. Wagh, Akot Members

Dr. G. H. Murhekar, Amravati

Dr. Ms. M. R. Maurya, Amravati

Dr. A. D. Bansod, Chandur Rly.

Dr. H. S. Chandak, Khamgaon Dr. G. D. Tambatkar, Shegaon

Dr. D. V. Jadhav, Mangrulpir

Dr. R. E. Khadase, Shirpur Jain

Dr. R. R. Wankhade, Digras Mr. R. V. Rathod, Ghatanji

Women Category : Dr. M. S. Naziya Rashidi

Co-pt. Members : Dr. S. S. Thakare, Chandur Rly.

Dr. V. W. Banewar, Amravati Dr. Ms. P. T. Agrawal, Akola

Ex-officio Member: Dr. A. S. Aswar, Amravati

SYLLABUS

B.Sc. (Semester- III)

Total Lectures: 84

Marks: 80

Chapter I

A] Covalent Bonding:

Molecular Orbital Theory. Postulates of MO theory. LCAO approximation. Formation of bonding and antibonding MOs. Rules for LCAO. MO energy level diagram. Concept of bond order. MO structure of homonuclear diatomic molecules of namely He₂, H², N₂ and O₂. Stability sequence of species of O₂ i.e. O₂, O₂⁺, O₂⁻²⁺, O₃ and O₂⁻². Paramagnetic nature of O². MO structure of heteronuclear diatomic molecules viz. NO, HF and CO (Coulson's structure). Explanation of important properties of CO viz. - triple bond, almost nonpolar nature, electron donor and acceptor behaviour. Comparison of VB and MO theories.

B) Metallic Bonding:

Free electron theory and properties of metals such as electrical and thermal conduction, malleability, ductility and metallic lusture. VB theory or Resonance theory of metals. Band theory to explain nature of conductors, insulators and semiconductors (both intrinsic and extrinsic).

C| VSEPR Theory:

Various rules under VSEPR theory to explain molecular geometry (following examples may be taken to explain various rules- BeCl₂, BF₃, CH₄, NH₄⁺, PCl₅, SF₆, IF₇, SnCl₂, NH₃, H₂O, SF₄, CIF₃, BrF₅, XeF₆, SOF₄, COF₂, PCl₃,). Limitations of VSEPR theory.

Chapter II

Theory of Quantitative Inorganic Analysis

A] Volumetric Analysis:

- a) Introduction:-Volumetric analysis, titrant, titrate, end point, equivalence point, indicator etc. Requirements of volumetric analysis. Definition of standard solution, primary standard substance. Requirements of primary standard substance. Terms to express concentrations namely- molarity, normality, molality, mole fraction and percentage. (Simple numericals expected).
- b) Acid-Base titrations:- Types of acid base titrations. pH variations during acid base titration. Acid base indicators. Modern theory (Quinoniod theory) of acid base indicators. Choice of suitable indicators for different acid base titrations.

c) Redox Titrations:-General principles involved in redox titrations (redox reactions, redox potentials, oxidant, reductant, oxidation number). Brief idea about use of KMnO4, K2Cr2O3 as oxidants in acidic medium in redox titrations. Use of I2 in iodometry and iodimetry. Redox indicators-external and internal indicators. Use of starch as an indicator. Iodometric estimation of Cu (II).

B] Gravimetric Analysis:

Definition. Theoretical principles underlying various steps involved in gravimetric analysis with reference to estimation of barium as barium sulphate. Coprecipitation and post precipitation. (Definition, types and factors affecting).

Chapter III

A] Aldehydes and Ketones:

Preparation of acetaldehyde from ethanol, ethylidene chloride and acetylene. Preparation of benzaldehyde from benzene (Gattermann-Koch reaction) and toluene. Preparation of acetone from isopropyl alcohol, isopropylidene chloride and propyne. Preparation of acetophenone from benzene and ethyl benzene. Structure of carbonyl group, acidity of á-hydrogen in carbonyl compounds. Reactions of aldehydes &/or ketones: Cannizaro's, Reformatsky, Perkin with mechanism, Mannich reaction, Benzoin and Aldol condensations. Clemmensen, Wolf-Kishner, MPV and LiAlH4 reductions.

B] Carboxylic acids:

Structure and reactivity of carboxylic groups. Acidity of carboxylic acids, effects of substituents on acids strength. Oxalic acid: Preparation from ethylene glycol and cyanogen. Reactions: Reaction with ethyl alcohol, ammonia, glycerol and action of heat. Lactic acid: Preparation from acetaldehyde and pyruvic acid. Reactions: Reaction with ethanol, PCl, action of heat, oxidation and reduction. Benzoic acid: Preparation from toluene, benzyl alcohol, phenyl cyanide and benzamide. Reactions: Reaction with ethanol, PCl, and ammonia. Salicylic acid: Preparation by Reimer-Tiemans reaction. Reactions: Reaction with CH, COCl, CH, OH and C, H, OH.

Chapter IV

Al Optical isomerism:

Element of symmetry, chirality, asymetric carbon atom, enantiomers, diastereoisomentelative and absolute configurations, DL and RS nomenclature, racemisation selection (by chemical method).

13

B| Geometrical isomerism:

Cis-trans & E-Z nomenclature, Methods of structure determination.

C] Conformational isomerism:

Bayer's Strain theory and its limitations. Stability of cycloalkanes, conformational isomers of ethane, n-butane and cyclohexane, their energy level diagrams. Newman & Sawhorse projection formulae.

Chapter V

A] Thermodynamics and Equillibrium:

[10]

(i) Gibb's and Helmholtz's free energy function. Physical significance of Gibb's free energy, Change in free energy as a criteria of spontaneity and equilibrium. Variation of free energy G with P & T. Gibb's-Helmholtz's equation in terms of G and its application. (ii) Partial molal function, chemical potential, derivations of Gibb's-Duhem equation. Chemical potential of an ideal gas in gaseous mixture. Derivation of vant Hoff's isotherm and its application to equilibrium state. Derivation of vant Hoff's equation and its applications. (iii) Numericals.

B] Phase Equillibrium:

[4]

(i) Immiscible liquids, Nerst distribution law and its application to association and dissociation of solute in one of the solvent. Process of extraction, derivation of formula for the amount of solute left unextracted after nth extraction. (ii) Phase transition -Clausius-Clyperon equation (only qualitative statement). (iii) Partially miscible liquids - Phase diagram of phenol-water, triethyl amine - water and nicotine-water systems. (iv) Numericals.

Chapter VI

A] Liquid state:

[4]

(i) Surface tension, determination and its S.I. Unit. Effect of temperature on surface tension, derivation of expression for relative surface tension by Drop number method. Application of surface tension. (ii) Viscosity, determination and its S.I. Unit. Effect of temperature on viscosity, derivation of expression for relative viscosity by Ostwald's viscometer method. Applications of viscosity.

B] Electrochemistry:

[10]

(i) Conductance of electrolyte solution. Specific, equivalent and molar conductance. Determination of conductance of electrolyte solution, variation of specific and equivalent conductance with dilution for strong electrolyte. Conductometric titrations. Applications of conductometric titration. (ii) Migration of ions under the influence of electric field. Transport number of ions. Determination of transport number by Hottorf's mathematical description of transport number of ions. Hottorf's method and Moving boundary method (iii) Kohlrausch's law of independent migration of ions. migration of ions. Determination of l, and degree of dissociation a of a weak electrolyte. Determination of dissociation constant of weak electrolyte. (iv) Numericals.

CONTENTS

SECTION-I (INORGANIC CHEMISTRY)

CHAPTER 1	
A. Covalent Bonding	Page No.
1.1 Introduction	
1.2 Molecular orbital theory (MOT)	
LCAO approximation (LCAO Method)	1
Kules for linear combination of atomic orbitals	2
1.5 Molecular orbital energy level diagram	5
1.6 Concept of bond order	5
1.7 Molecular orbital (MO) structure of various molecules	7
1. Structure of hydrogen (H ₂) molecula	7
2. Structure of helium (He ₂) molecule	7 8 8
 Structure of nitrogen (N₂) molecule 	
4. Structure of oxygen (O ₂) molecule	9
1.6 Molecular orbital structures of heteronuclear distance molecular	11
Structure of carbon monoxide (CO) - Coulson's structure	13
of hydrogen fluoride (HF)	13
3. M. O. structure of nitric oxide (NO)	16
B. Metallic Bonding	1.7
1.9 Introduction	
1.10 Free electron theory	19
1.11 Valence bond theory or resonance theory	19
1.12 Molecular orbital theory or band theory	20
	21
C. VSEPR Theory 1.13 Introduction	
	25
1.14 Rules under VSEPR theory	25
1.15 Structure of molecules with regular geometry	
structure of molecules with distorted geometry	28
(Molecules containing lone pairs)	2.1
1.17 Structure of molecules with multiple hands (double as triple)	31
VIOLECINE	35
2. Structure of SOF, Molecular	35
1.18 Limitation of VSEPR theory	36
• Exercise	36
	37
CHAPTER 2	
A Maria	
A. Volumetric Analysis	
introduction	22
Volumetric analysis	39
- "TOTALI Terms	39
2.4 Requirements of wal	39
2.4 Requirements of volumetric analysis	40

		Advantages of volumetric analysis	40
	2.5	Advantages of Volumetric and Standard solution	40
	2.6	Primary standard substance	40
	2.7	Terms to express concentration Selector of volumetric methods.	41
	2.8	Terms to express concentration Classification of titrimetric or volumetric methods.	45
	2.9	Classification of titrimetro Acid – base or neutralization indicators	46
	2.10	Acid – base or neutralization indicators Acid-base or neutralization indicators Acid-base or neutralization indicators Acid-base indicator	48
	2.11	Acid-base or neutralization indicators Acid-base or neutralization indicators Modern theory (Quinonoid theory) of acid-base indicator Modern theory (Quinonoid theory) of acid-base indicator	48
	2.12		49
	2.13	Choice of Sultable med	51
		Redox titration Important oxidation- reduction titration reagent	52
	2.15	Important Oxidation	54
	2.16		
B.	Grav	imetric Analysis	57
700	2.17	Introduction Steps involved in gravimetric analysis with reference to estimation of barium as	
	2.18	Steps involved in gravimetric analysis with reference	57
		t Culphate	60
	2.19	Co-precipitation and post-precipitation	61
		Exercise	× .
		SECTION-II (ORGANIC CHEMISTRY)	
200			
1000000	Wilder Co. Co.	TER 3	
A.	Aldeh	ydes and Ketones	63
	3.1	Introduction	63
	3.2	Preparations of Aldehydes and Ketones	63
		A. Acetaldehyde or Ethanal (CH ₃ -CHO)	64
		B. Benzaldehyde (C ₆ H ₅ -CHO)	65
		C. Apotone or propanone (CH ₂ -CO-CH ₃)	66
		D. Acetophenone or methyl phenyl ketone (C ₆ H ₅ -CO-CH ₃)	66
	3.3	Structure of carbonyl group	67
	3.4	Acidity of α-hydrogen in carbonyl compounds	
	3.5	Reactions of aldehydes and/or ketones	68
		1. Cannizzaro reaction	68
		2. Reformatsky reaction	69
		3. Perkin reaction	70
		4. Mannich reaction	71
		5. Benzoin condensation	72
		6. Aldol condensation	72
	3.6		73
	3.0	Reduction of aldehydes and/or ketones	73
		1. Clemmensen reduction	74
		2. Wolf-Krishner reduction	74
		3. Meerwein-Ponndorf-Verley (MPV) reduction	75
		4. Reduction reaction by using Lithium Aluminium Hydride (LIAMA)	
В	Carb	oxylic Acids	77
	3,1	Introduction	77
	3.8	Structure and reactivity of carboxylic group	1.50.50
		- reactivity of carboxytic group	

3.9	Acidity of carboxylic acids	
3.1	0 Effect of substituents on acidity attempth	78
3.1	Parations and reactions	79
	A. Oxalic acid (ethane-1.2-dioic acid or ethandioic acid) (HOOC co-	81
	acid (u-nydroxy propionic acid of 2-nydroxy propagoic acid)	81
	Delizote della (penzene carbovylic acid) (C.HCOCH)	83
	Salicylic acid (o-hydroxy henzoic acid) (C ₄ H ₄ -OH,COOH)	84
	• Exercise	85
		86
CHA	PTER 4	
	eochemistry	
4.1	Introduction	91
4.2		91
4.3	- Private received talli	92
4.4	James Caroon Atom	92
4.5	James and Child Molecules	93
4.6	or by minory	93
4.7		94
4.8	Diastereomers or Diastereomorphs	95
4.9	Configuration	95
4.10	D and L configuration	96
4.11	R and S configuration	97
4.12	2 Racemisation	99
4.13	Resolution	99
B. Geor	metrical Isomerism	
	Introduction	101
	Cis-trans Nomenclature	101
	E-Z Nomenclature	14.14
1000000	Methods of Structure Determination	101
		103
	formational Isomerism	
	Introduction	105
4.19	Baeyer's Strain Theory (Stability of cycloalkanes)	105
4.20	Conformations	106
4.21	Newman Projection Formula	107
4.22	Sawhorse Projection Formula	107
A C	Exercise	111
	SECTION-III (PHYSICAL CHEMISTRY)	
CHAP	TER 5	
Therm	nodynamics	
5.1	Gibb's and Helmholtz free energy	115
	Work function (Helmholtz function/Helmholtz free energy)	116
5.2	Variation of Helmholtz function/Work function with temperature and volu-	
5.3	Variation of Gibb's function / 6	118
5.4	Variation of Gibb's function / free energy with temperature and pressure	

	Spontaneity in terms of free energy	
5.5	Spontancity in terms of the Sp	119
5.6		120
5.7	Chemical potential Gibbs Duhem equation Gibbs Duhem equation Gibbs Duhem equation	121
5.8	Gibbs Duhem equation Chemical potential of an ideal gas in a gaseous mixture Chemical potential isotherm	123
5.9	. Hatt teachon is	124
5.1	Van't Hoff equation (temperature dependence of equilibrium constant	125
5.1	Vall 11.55	t) 126
n Pha	se Equilibrium	
5.17	se Equilibriations Immiscible liquids Applications of Nernst distribution law	129
	Annications	130
		136
5.15	Partially inisciple inquisit	137
	• Exercise	138
CHA	PTER 6	
THE RESIDENCE OF THE PARTY OF T		
	d State	141
6.1	Introduction	141
6.2	Surface tension Determination of surface tension by drop number method	141
6.3	Effect of temperature on surface tension	142 143
6.4		143
6.5	Viscosity Measurement of viscosity by Ostwald's viscometer method	144
6.6	Measurement of viscosity by Ostward's viscometer incured	146
6.7	Effect of temperature on viscosity	140
	trochemistry	149
	Introduction Conductors of electrolyte colutions	149
6.9	Conductance of electrolyte solutions	150
	Determination of conductance of electrolyte solution	151
	Determination of cell constant	153
6.12	Variation of specific and equivalent conductance with dilution	154
6.14	Conductometric titrations	156
6.15	Migration of ions under influence of electric field	것 같을
6.16	Transference number or transport number or Hittorf's number of ions	158
617	Determination of transport number	164
	Nullifausch's law of independent migration of ions	165
2500.000	Applications of conductivity measurement Exercise	168

A. COVALENT BONDING

1.1 Introduction ajority of the compound of the universe contain covalent bonds. For example compounds presents in animals and plants such as oils, protein, sugar, woods etc. are covalent compounds. Gases such as nitrogen, oxygen, hydrogen chloride, ammonia are covalent compounds. A covalent bond is formed by the sharing of electron between the two atoms participating in bond formation.

Lewis theory explains covalent bond formation on the basis of tendency of atoms to attain stable noble gas configuration by sharing of electrons. But it could not explain the stability, reactivity and geometry of covalent molecules.

In covalent bond one has to understand what types of forces exist which keep the electron pairs in contact with the two atoms. This idea has been explained on the basis of wave mechanics. Two wave mechanical theories of covalent bond have been formulated to explain the nature of covalent bond these approaches are :

- (A) Valance Bond Theory
- (B) Molecular Orbital Theory

1.2 Molecular orbital theory (MOT)

This theory was developed by Hund, Mulliken and Lehnard Jones. In it a molecule is regarded as a system of nuclei and electron in which each electron move in a field of other electrons and all the nuclei.

Molecular orbital theory (MOT) is more modern and more rational. It regards the molecule as a single unit. This theory uses wave function (ψ) to describe how electrons are distributed in molecules, in the same way as a quantum mechanics use wave function to describe how electrons are distributed in atoms. The area in which the probability of finding an electron is high is called molecular orbitals. Molecular orbitals can be used quantitatively to calculate geometry, energy levels and other properties of molecules.

Postulates or salient features of MOT

i) Molecular orbitals are formed by combination of atomic orbitals of nearly same energy and symmetry.

ii) In MO theory all the electrons in molecules are considered to be under the influence

of all the nuclei present in a molecule. The number of molecular orbitals formed is equal to the number of atomic orbitals undergoing continuous true molecular orbitals undergoing combination. When two atomic orbital combine, two molecular orbitals are formed. One is the are formed. One is lower energy is called bonding molecular orbital (BMO) and other is higher energy is is higher energy is called anti-bonding molecular orbital. (ABMO)

REVAMPING OF ACADEMIC LIBRARIES

FOR NEW GENERATION VOL - I

- (I) Library and Library Profession
- (II) Library Services and Utility

EDITORS

Dr. Vinay B. Patil
Librarian,
A.D.P. Mandal's, Women's College of Art, Com. & Home Science, Jalgaon.

Mr. Shirish A. Zope Librarian, Dr. Annasaheb G.D. Bendale Mahila Mahavidyalaya, Jalgaon. Dr. Chandrashekhar D. Wani Librarian, KCES's Institute of Management & Research, Tal. Dist. Jalgaon.

Mr. Sunil P. Patil Librarian, DNCVP's Shirish Madhukarrao Chaudhari College, Jalgaon, Dist. Jalgoan (MS)

Atharva Publications

INDEX

	(I) Library and Library Profession
ា	Academia I Bases in India - A Brief Perspectives
•	- Dr. Govind S. Ghogare ICT Skill Required by Academic Librarian in Digital Environment
•	Shri. Gantam A. Wani, Dr. Niraj T Khohragade Fort Museum (ASI) Library, Chennai : A Study
•	Role of Library in Research
**	From Card Catalogue to Web OPAC Proj. Ranjana K. Jawanjal
*	Librarianship is a Profession 17 - Dr. S.P. Nimbhorkar
٠	Human Library : A New Approach
	Green Library
•	Role of Accademic Libraries in Research
	Green Library
•	Soft Skills for Library Professionals in Information Era
٠	Library Staffing Considerations in Academic Colleges in Changing Era
•	Soft Skills
	Green Libraries - A New Concept and Need
	Green Library
e e	Revised NAAC Framework: Opportunities for Libraries in Higher Education
Š	Green Library : A Need of Time
1	A Study of Knowledge Resource Center in NAAC Accreditation & Non-Accreditation 57 Academic Colleges it's Impact on their Students Learning Satisfaction - Special Reference to Akola District - Dr. Seema Kale
	Development of Online Book Review Portal by Using Wordpress: A Case study
	Library Science: Past, Present and Future
	Performance Appraisal: Need in Library and Information Sector

From Card Catalogue to Web OPAC

Prof. Ranjana K. Jawanjal Librarian, Shri Dnyaneshwar M. Burungale Science & Ans College, Shegaon, Dist. Buldana.

Abstract

Due to the development of Information Technology in Libraries, Card catalogue changed in ofweb once that Card of Information Technology in Libraries, Card catalogue changed in form of web opac. Web OPAC is a library catalogue on the Web or Intranet. Users can search be required information. It is a library catalogue on the Web or Intranet. Users can search be requiredinformation by connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the theday and from the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting the connecting to Uniform Resource Locator (URL) of Web OPAC anytime during the connecting the theday and from anywhere in the world.

Kewword - Card Catalogue, opac & web-Opac

Introduction

Web OPAC is a systematic application and not exploitation of information technology. The concept of Web OPAC is very well established and practiced successfully in developed countries especially in USA and UK. Majority of their libraries are well equipped with it and offer regular service to their members. The development of Web OPAC activities can be seen as evolution of OPAC activities into Web OPAC. Simply stated, a Web OPAC is a library catalogue on the Web or Intranet. Users can seam had the required information by connecting to Uniform Resource Locator (URL) of Web OPAC anytimes during the day and from anywhere in the world. A different definition can be seen on the Internaccording to which a 'WEB OPAC is an independent program designed separately from the Library Information technologychanged the entire environment of the library including resources, technique services, etc. OPAC (Online Public Access Catalogue) changed the traditional card catalogue system The University Grants Commission (UGC) in India, with the help of the Information and Library Network (INFLIBNET), is playing an important role by providing funds and technical support for implementation of library management systems (LMSs), including OPACs, in university libraries. NIC is also playing important role by supplying free software to their institutions, after open source technologies many I Moare came up, most of the library are implementing the open source LMS.

Card Catalogue

Library fulfils all the information requirements of every human being. Every person is not able to purchase all types of reading materials. So, they are dependent on libraries/information centers for fulfills their information needs. Library has organize many documents like books, thesis, manuscripte periodicals, Pamphlets, maps, motion pictures, tapes and other printed and non printed materials. We can well imagine as to what will happen if these documents are not prepared systematically. This system should fulfill all the search approaches about the documents like author, title, publisher and call number etc. Such a retrieval system in the context of a library is called library catalogue. According to Clark (2000) "The librarycatalogue is an essential tool. It is an index or a key to the collection, containing an entry representing each item" The various types of library catalogue are used to find out the desired information of user community in the library. The card catalogue fulfils the various approaches of the users likeauthor, title, subject and call number, etc. Card catalogue was quite useful tool of information retrieval systems Right now, most OPACs provide Author, Title, Author/Title, Subjecton circulation system records of based on simple MARC records, perhaps with a circulation, serials, or acquisitions module. First generation OPACs were little more than poor imitations of print retrieval tools. Access points were limitedonly to those that were available in the card catalogue, that is, left-anchored searches. First generation OPA(were primarilybook finding lists and worked best for known-item search.

Online Public Access Catalogue (OPAC)

Online Public Access Catalogue (OPAC) contains all the bibliographic information of aninformation centre or we can say it is a gateway toinformation centre's collection. OPAC is the modern andflexible form of the catalogue, usually instantaneous and sophisticated access to any recorded information within acomputer. Online Dictionary for Library and Information Science (ODLIS) defines OPAC as, "An acronym foronline public access catalog, a database composed ofbibliographic records describing the books and otherMaterials owned by a library or library system, accessiblethose from the developing nations, may choose their library software catalogue data into terms that the libraryuser understands, making books more easily accessible via OPACs and fostering a sense of community around library collections (Harman 2008). In 1929 more easily accessible via OPACs and fostering a sense of community around the Washington State 2008). In 1999, Chrisman, Diller, and Walbridge conducted a usability study of the Washington State University Library CPACs and Constant CPACs aroblems were related to subject index. University Library OPAC. And he found that most of the OPACs problems were related to subject indexes and article databases. and article databases; participants could not find and did not understand how to use these features.

The concept of Web OPACs is recent origin and it is serving as a gateway to the resources not only by the respective to the concept of Web OPACs is recent origin and it is serving as a gateway to the respective library but also to the holdings of other participating libraries without to local collection but going the respective library but also to the holdings of other participating. It allows users to interact collection but going, beyond further to regional, national, international levels. It allows users to interact with documents standard and the collection but going, beyond further to regional, national, international levels. with documents stored on computers all over the world and makes easier access to catalogue data in the form of bibliographic form of bibliographic records. It becomes another search engine referred as 'web cat' and as an 'Information gateways'. It can specific records to be a search engine referred as 'web cat' and as an 'Information gateways'.

and Gopher and support the file and document like Portable Document Format (pdf), (HTML), etc. gateways'. It can support protocols such as telnet, HTTP., ftp. According to Online Dictionary for Library and Information Science defined as: "An Online Public Access public catalogus (Onl. C.) Access public catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the World Wide Web, as opposed to a transfer of the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the World Wide Web, as opposed to a transfer of the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the World Wide Web, as opposed to a transfer of the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the World Wide Web, as opposed to a transfer of the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the world wide web to the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the world wide web to the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the world wide web to the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the world wide web to the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that uses a graphical user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (GUI) accessible via the catalogue (OPAC) that user interface (OPAC) that user inte

Web, as opposed to a text based interface accessible via telnet".

Features of WEB OPAC

The important features of Web OPACs are:

It is accessible through internet.

It is possible to search independently by Author, Keyword, Title or Year. 2

Displays complete bibliographic information as appeared on reprints. 3.

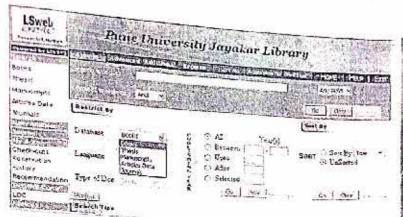
Features of traditional OPACs such as storing bibliographic and sometimes full text databases; 4. providing direct access to a library's bibliographic database by means of terminal or PC; search result in readily understandable form; reference help, etc.

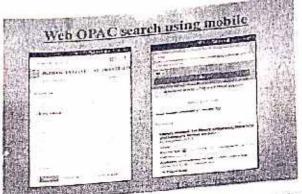
It has ability to use hypertext links to facilities navigation through bibliographic records. 5.

Linking to full text when available is there.

Some Past Studies

Even though the number of studies of card catalogue of libraries are limited, studies on use of OPAC are plenty and there exists good number of reviews of OPAC studies (Larson, 1991; Heldreth, 1985; O'brien, 1994). OPAC appeared in the libraries of developed countries in early 1980s but about 5 to 10 years later in developing countries. The most extensive study of OPAC was by multiple studies instituted by Council on Library Resources (CLR) during 1981-83 covering 16 systems in 29 libraries with about 12000 users and nonusers (Ferguon, et al., 1982).


The first generation OPACs which emulated the card catalogue approach (online card catalogue models) lacked authority control over name and subject headings. They did not cover some types of materials, portions of books and information about utility and availability of books. The change from the pre-coordinated search of card catalogue to post-coordinated retrieval in OPACs, improved and remote access, varieties of search features, display and user interface, e-mail delivery, holdings of other libraries, current awareness service, circulation information, ordering and processing files, etc., became common in the second generationOPAC. Yet the extensive cross references of the traditional card catalogue are taissing in OPACs. Further, being an automated system, OPAC spenalize users heavily for any error in imputing the query. The interactive, intelligent, diagnostic, natural language based third generation CPACs are yet to be widely made operational.


Types of OPAC currently in use

There are probably now (carly 1985) between fifty and a hundred distinct OPAC systems in use. Must of these are in the USA, with a handful in the UK and the rest of Europe. Some are commercially available, increasingly now as part of integrated library systems. Many were developed as in-house natems by academic, national and public libraries. It may be helpful to regard OPACs as falling into three the gories, of which the first is, in the main, historically the oldest. These are roughly 12 2. Online public cess catalogues equivalent to Hildreth's "three generations" of OPAC which he defined in a recent per [20], but it should be realized that it is not always possible to place a given OPAC firmly in a specific meration. The first and second generations are most readily distinguishable by the types of access key povided.

Differences Between Card Catalogue And Web-OPAC

There are many big differences between the OPAC and the card catalogue: Almost every single part the bibliographic record is accessible through keyword searching; this capability helps users find data entained in notes, including contents note

Features of Web OPAC: The following significant features of Web OPACs are given as under: Right now, most OPACs provide Author, Title, Author/Title, Subject Heading, Call Numbers, ISBN, ISSN and Keywords, etc. and Keywords, etc., access points. OPACs provide users with many more means of searching and accessing information in accessing information in various formats than the traditional card catalogues. OPAC and browsing in both related to each other in a number of various aspects such as searching, accessing and browsing in both the casesprovides are the casesprovides pre-coordinated as well as post-coordinated phrases options. OPAC usage is limited, only the persons in LANG. only the persons in LAN/Intranet can use it while Web OPAC usage is worldwide web anyone can access it from anywhereas it. it from anywherean time with the help of internet connection.

OPAC is an interactive search module of an automated librarymanagement system. Any record is searched directly from anode within a database of the organization or remotely throughnational and international networks. Members can see the collection and issue status of each document of the informationcentre. Thus finally we see that a lot of cataloguing work due to availability of various Web OPACs is reduced. Web OPACsimprove the quality, speed and performance of the services officed by the libraries. Web OPACs get improve the quality, speed and performance of the services provided by thelibraries. The interlibrary loan becomes easier with the use ofe-mail and web. They could reserve or request online for thedocument of their interest.

- Behera Priyanka Manjari.. From Card Catalogue To Web Opac, International Journal of Information Research References and Review Vol. 05, Issue, 05, pp.5482-5485.
- and Review vol. 03, 1332, 37, 197, 197, 197, 2012 International Thanuskodi S., Use of Online Public Access Catalogue at Annamalai University Library. (2012 International Journal of Information Science, 2(6): 70-74. 2.
- Msagati, Nelson. Awareness and Use of OPAC by distancelearners: The Case of the Open University Msagau, Ivelson. ... Open University of Tanzania" (2016). Libraryphilosophyand Practice (e-journal). of TanzaniaThe Case of the Open University of Tanzania" (2016). Libraryphilosophyand Practice (e-journal). 3. 1482. Http://digitalcommons.unl.edu/libphilprac/1482
- Asokan, L. & Dhanavandan.s., (2015) Awareness and Usage of Online Public Access Catalogue (OPAC) by Asokan, L. & Change (OFAC) by Students and Faculty Members: A Case Study Journal of Emerging Trends in Computing and Information 4. Sciences Vol. 6, No. 4